Environmental pollutants in fish oil products and the importance of efficient removal

Introduction - Motivation

Deaths in USA
due to low
intake of fruits
and
vegetables:
58.000/year

Heart deaths in USA due to low intake of EPA and DHA: 84.000/year

Costs of low omega-3 intake: **10.000 Euro/employee/year**

Is it healthy to eat more fish?

The New Hork Times

December 12, 2012

If Mercury Pollution Knows No Borders, Neither Can Its Solution

By KATE GALBRAITH

AUSTIN, TEXAS — The harm that can be caused by consuming or breathing mercury is well known and terrible. A pregnant woman, eating too much of the wrong kind of fish, risks bearing a child with neurological damage. Adults or children exposed to mercury can experience mood swings or tremors, or sometimes even respiratory failure or death.

Fish pollutants' link to diabetes

More evidence has emerged suggesting a link between pollutants found in oily fish and type two diabetes.

An international team found high levels of persistent organic pesticides (POPs) in the blood correlated to insulin resistance, a precursor to diabetes.

POPs are stored in fatty tissues - the study suggested this may be why obese people are more vulnerable to diabetes.

Fish from polluted rivers 'can trigger breast cancer'

POPs – Persistent organic pollutants

Man-made chemical substances like

- PCB
- dioxins
- DDT
- Brominated Flame Retardants (BRF)

- Persistent
- Long-range transport
- Lipophilic
- Toxic

Dioxin- a persistent environmental pollutant

POPs accumulate in the food chain

HUMAN EXPOSURE

Fish is the main source of PCB

PCB intake from the market basket

Relative contributions

Adapted from Törnkvist A et al. Chemosphere 2011;83:193-9

POPs are passed on to the next generation

- POPs cross placenta
- High concentrations in breast milk

- Babies receive daily doses exceeding safe limit
- Still, breast feeding is strongly recommended

Limits are set by health authorities

Tolerated Daily Intake: The amount that can be ingested daily over a lifetime without considerable health risk

INTAKE THROUGH FOOD CAN EXCEED TOLERATED DAILY INTAKE (TDI)

	Dioxin-like PCBs (pg/kg/ day)	Non-dioxin- like PCBs (ng/kg/day)
TDI	1-4	20*
Estimated daily intake	1.2-3.0	15-35

Rocca and Mantovani 2006

VARIOUS OMEGA-3 SUPPLEMENTS GIVE EXPOSURE ABOVE TDI ALONE

0%

High fish intake

Fernandez et al. 2006

High fish intake

High levels of pollutants are common in fish oil supplements

Biological effects

Many adverse health effects associated with POPs

- Metabolic effects
 - Diabetes and metabolic syndrome

- Neurodevelopmental problems
 - Learning and behavior problems in infants

Many adverse health effects associated with POPs

Metabolic effects

Diabetes and metabolic syndrome

Neurodevelopmental problems

Learning and behavior problems in infants

Cancer

- PCB is classified as probable carcinogen
- Excess mortality reported from various cancers forms in highly exposed areas

Increased diabetes prevalence linked to POPs exposure

POPs promote insulin resistance and metabolic disorders

Exposure to POPs increases the risk of developing insulin resistance and metabolic disorders

Ruzzin et al. 2010

Experimental Model:

- Rats fed salmon oil with and without POPs for 4 weeks
- Oil was made from fish aimed for human consumption
- Assessment of body weight, insulin sensitivity, lipid parameters and hepatosteatosis

- Treatment groups:
 - Control feed
 - High fat diet with 20% corn oil
 - High fat diet with 20% refined fish oil (low POPs)
 - High fat diet with 20% crude fish oil (high POPs)

Exposure to POPs (cont.)

Rats exposed to crude, but not refined, salmon oil developed insulin resistance, abdominal obesity, and hepatosteatosis

Metabolic syndrome and diabetes type 2

- Metabolic syndrome is a risk factor for diabetes 2 and precedes the onset with one or two decades
- The prevalence worldwide is increasing dramatically
- Established risk factors are sedentary life style, smoking, age and high BMI

METABOLIC SYNDROME

Central obesity
High blood pressure
High TG
Insulin resistance

High levels of POPs a strong risk factor for metabolic syndrome

Odds ratio for specific metabolic syndrome criteria by quartile of PCBs in serum

Criteria	PCB 1 st quartile	PCB 2 nd quartile	PCB 3 rd quartile	PCB 4 th quartile	p value
BMI ≥ 25kg/m ²	1.0	1.7	1.8	2.6	<0.01
Blood pressure ≥ 130/85 mmHg	1.0	1.0	1.1	1.9	<0.01
Triglycerides ≥ 150 mg/dl	1.0	2.4	3.4	5.2	<0.01
HDL ≤ 40mg/dl females HDL ≤ 50mg/dl males	1.0	1.1	1.9	2.1	<0.06
HbA1c (≥5.6%) or physician diagnosis of T2DM)	1.0	2.1	3.1	8.0	<0.01

Adapted from Uemura et al. 2009

Persistent Organic Pollutants (POPs) and malignancies

- In brain, liver, breast, skin and more
- Pollutant burden is correlated with more aggressive and metastatic breast cancers with a poorer survival rate

PCBs Enhance Metastatic Properties of Breast Cancer Cells

Increased motility in PCB exposed tumour cells.

Increase number of tumours in PCB exposed mice.

POPs and development of brain functions

- The brain receives a large portion of the accumulated PCBs.
- Many studies made on cognition and motor development in early childhood and school age.
 - Majority of all studies made show a clear negative effect of PCB exposure on cognition in children (reviewed in Schantz et al 2003)
- Association between low-level POPs exposure and ADHD-like behavior (Sagiv et al. 2010)

POPS and development of brain functions

Drawings by children in the foothills

Area of No Pesticide Use

Drawings by children in the valley

Area of Pesticide Use

Removing pollutants

Pollutants can be removed during manufacturing

- Pollutants are stripped early in the production process
- Early removal prevents up-concentration of pollutants at later stages

Short-path distillation with working fluid removes pollutants but not EPA/DHA

Chemosphere 92 (2013) 273-278

Contents lists available at SciVerse ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Removal of persistent organic pollutants in fish oils using short-path distillation with a working fluid

Jan Josef Olli a,*, Harald Breivik b, Olav Thorstad c

- ^a AVS Chile SA, Casilla 300, Puerto Varas, Chile
- ^b Neperdo Biomarine, Asphaugen, NO-8140 Inndyr, Norway
- ^cPronova BioPharma Norge AS, P.O. Box 2109, NO-3202 Sandefjord, Norway

Taking home message Balance of risk and omega-3 benefits

Take home messages

- POPs are toxic to humans
- POPs are lipophilic and accumulate in crude fish oil, but may be efficiently removed.
- To promote health the purity of the Omega-3 product is critical

THANK YOU FOR YOUR ATTE

Q & A

Measurement of environmental contaminants in globally-represent samples of fish oil supplements GOED Nutrasource (sampling 2005-2010)

- BASF
 The Chemical Company
- Abstract: 1894 fish oil samples were analyzed against GOED Voluntary Monograph.
- 44 brands from 8 countries over 6 years.
- Mean EPA/DHA concentration in all 1894 samples 38.39%
- PCB analyses:
 - DL PCBs 297
 - NDL PCBs: 683

Number of brands?

- Concentration of PCB reported as:
 - EPA/DHA ≤ 50% (167 samples –whereas 57% samples in 2010
 - EPA/DHA ≥ 50% (516 samples –whereas 42% in 2010)

Number of brands?

- EPA + DHA number samples:1894 mean 38.39 StE 0.6261
- √1894= 43,5
- Standard dev 0.6261x 43.5=27,24
- 95th percentile: 2x 27,24= +/-: 54,5

Published PCB and TEQ levels in consumer products around the world.

The Chemical Company

Sum of PCBs and TEQs measured in fish oils around the world. Dioxin-like PCBs conctitute 60-90% of the TEQ value

Component	Country	TEQ pg/g	Sum PCBs ng/g	Reference
Salmon oil	Canada	70.1	36-105	Bourdon et al., 2010
Salmon oil	Canada	18.0	36- 170	Rawn et al., 2009
Cod liver oil	UK	12.9-46.0	153	Fernandes et al., 2006
Cod liver oil	Spain	9.4-14.5	49.7-98.3	Marti et al., 2010
Cod liver oil	Ireland	0.6-37.6		Marti et al., 2010
Fish oil	Japan	1.3-29.5		Marti et al., 2010

TK model of EFSA 2005 giving TDI for NDL PC

- BMDL (neurological/immune effect after perinatal exposure) 1µg
 PCB/kg lipid in mothers, effect after total exposure of all PCBs)
- Daily intake of 40 ng PCBs/kg body weight/day result in serum level of 1µg PCB/g lipid.
- 6 indicator NDL PCB constitute 50 % of the BMDL value of 1µg PCB/g lipid (assumption) = 0.5µg PCB6/g lipid

=20 ng PCB6/kg body weight /day

- EFSA have montitored the levels of PCB and dioxin in all food items for many years.
- EFSA in 2012, The concluion in the report where that the average exposure vary 0.57 -2.54 (30-130% of TDI), and the 95th percentile were between 1,2-9,9 pg TEQ/kg which is 60-495% of TDI.
- Also, that 1-52,9 % of the population are stimated to exceed the limit of 14pg/ kg/week

Reference list

- Törnkvist A et al. (2011)" PCDD/F, PCB, PBDE, HBCD and chlorinated pesticides in a Swedish market basket from 2005--levels and dietary intake estimations". Chemosphere 83:193–9
- Alcock R.E et al (2000) A generic model of human lifetime exposure to persistent organic contaminants: development and application to PCB-101" Environmental Pollution 110 (2000) 253-65
- Kimbrough RD, Krouskas CA, et al. (2010). Human uptake of persistent chemicals from contaminated soil: PCDD/ Fs and PCBs. Regul Toxicol Pharmacol. 57:43-54
- Hay, A. and J. Tarrel (1997). "Mortality of power workers exposed to phenoxy herbicides and polychlorinated biphenyls in waste transformer oil." <u>Ann N Y Acad Sci</u> 837: 138-56.
- Ha MH, Lee DH, Jacobs DR. "Association between serum concentrations of persistent organic pollutants and self-reported cardiovascular disease prevalence: results from the National Health and Nutrition Examination Survey, 1999–2002." Environ Health Perspect. 2007; 115:1204–1209.
- Ruzzin, J., R. Petersen, et al. (2010). "Persistent organic pollutant exposure leads to insulin resistance syndrome."
 Environ Health Perspect 118(4): 465-71.
- Henriksen, G. L., N. S. Ketchum, et al. (1997). "Serum dioxin and diabetes mellitus in veterans of Operation Ranch Hand." <u>Epidemiology</u> **8**(3): 252-8.
- Longnecker, M. P. and J. E. Michalek (2000). "Serum dioxin level in relation to diabetes mellitus among Air Force veterans with background levels of exposure." <u>Epidemiology</u> **11**(1): 44-8.
- Lee, D. H., I. K. Lee, et al. (2006). "A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002." <u>Diabetes</u> Care **29**(7): 1638-44.

Reference list (cont.)

- Liu, S., S. Li, et al. (2010). "Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating Rho-associated kinase (ROCK)." <u>PLoS One</u> **5**(6): e11272.
- Sagiv, S. K., S. W. Thurston, et al. (2010). "Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children." <u>Am J Epidemiol</u> **171**(5): 593-601.
- Ibrahim MM, et al. (2011) "Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice "PLOS one 2011 Sept; 6(9)
- Arsenescu, V., R. I. Arsenescu, et al. (2008). "Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis." Environ Health Perspect 116(6): 761-8.
- Smith GC, Hart AD, Rose MD, MacArthur R, Fernandes A, White S, Moore DR. 2002. Intake estimation of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in salmon: the inclusion of uncertainty. Food Addit Contam. 19:770-778.
- Demers, A., P. Ayotte, et al. (2000). "Risk and aggressiveness of breast cancer in relation to plasma organochlorine concentrations." <u>Cancer Epidemiol Biomarkers Prev</u> 9(2): 161-6.
- Lind M et al (2012) "Circulating levels of persistant organic pollutants (POPs) and carotid atherosclerosis in the elderly." Environmental health perspective 120 (1) 38-43. ■
- Ford E., et al (2004) "Increasing Prevalence of the Metabolic Syndrome Among U.S. Adults" Diabetes care, volume 27, number 10, 2444-2449.
- Uemura et al (2009) "Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan's general population" Apr;117(4):568-73.

Reference list (cont.)

- Schantz, S. L., J. J. Widholm, et al. (2003). "Effects of PCB exposure on neuropsychological function in children." <u>Environ Health Perspect</u> 111(3): 357-576.
- Høyer et al (2000) "Organochlorine exposure and breast cancer survival" J Clin Epidemiol. 2000 Mar 1;53(3): 323-30.
- Gregoraszczuk EL, Ptak A (2013) «Endocrine-Disrupting Chemicals: Some Actions of POPs on Female Reproduction." Int J Endocrinol. 2013;2013:828532
- Guillette EA et al (1998) «An Anthropological Approach to the Evaluation of Preschool Children Exposed to Pesticides in Mexico" <u>Environ Health Perspect.</u> 1998 Jun;106(6):347-53.