

Algae-based feed ingredients for aquaculture: synergies from microalgal fuel industry

Miguel Olaizola and Justin Butler

ProAlgae Conference

Bergen, April 30 2013

Outline

- Issues with fish oil and fishmeal
 - Aquaculture versus wild catch and demand/pricing
- Microalgae as a source of nutrition
 - Proximate analysis
 - Protein source
 - Lipid source
 - Micronutrients
- Microalgae environmental advantage
 - Water and nutrients
- Synergies with
 - Biofuels
 - CO₂ capture
- Production of microalgae at scale
 - Issues of cost and scale
- Synthetic Genomics' strategy
 - Facilities
 - Enhancement of desired traits

Issues with fish oil and fishmeal

Microalgae nutritional advantage: proximate analysis

microalgae can provide complete protein with lipids

Source	Protein crude%	Pepsin digestibility%	Oil %	Fiber crude%
Menhaden	64.2	92.8	8.9	
Target	65.0	>85	12.0	
Tetraselmis	49.1	93.2	13.7	0.4
Rhodomonas	45.7	90.1	25.1	2.1
Pavlova	57.5	92.1	82.7	0.0
Nannochloropsis salina	51.0	82.7	20.4	1.5
Nannochloropsis gaditana	45.7	63.0	18.7	1.0
Navicula	48.9	<i>85.0</i>	18.8	0.4
SGI573 (Haptophyte)	46.6	92.1	25.1	0.1
Isochrysis	41.2	92.1	17.0	0.1
Pophyridium-a	35.9	79.3	7.7	0.7
Pophyridium-b	40.0	83.9	10.4	0.0
SGI286 (Prymnesiophyte)	39.0	89.1	26.5	0.4
Other non-SGI strains				
Maximum	86.0	65.5	48.5	
Minimium	2.0	4.0	11.0	
Average	20.1	45.5	22.7	

Microalgae nutritional advantage: proteins

similarity with fishmeal

Labels	Source	Data source	
1	Whey isolate	SGI	
2	Whey concentrate	SGI	
3	Rennet casein	SGI	
4	SGIC0739	SGI	
3 4 5 6	SGIC0609	SGI	
6	SGIC0537	SGI	
7	SGIC0463	SGI	
8	SGIC0675	SGI	
9	SGIC1328	SGI	
10	SGIC0907	SGI	
11	SGIC0908	SGI	
12	SGIS0250	SGI	
13	SGIS0573	SGI	
14	SGIS0285	SGI	
15	SGIS0886	SGI	
16	Schizochytrium	Pyle et al., 2008	
17	Fishmeal	IAFMM, 1970	
18	Soymeal	Miller, 1970	
19	Egg	Becker, 2007	
20	Soy bean	Becker, 2007	
21	Chlorella	Becker, 2007	
22	Arthrospira	Becker, 2007	
23	Spirulina	Becker, 2007	
24	Eggwhite	Miller, 1970	
25	Tuna	Miller, 1970	
26	Beef	Miller, 1970	
27	Chicken	Miller, 1970	
28	Casein	Miller, 1970	
2 9	Yeast	Miller, 1970	
30	Greenpea	Iqbal et al., 2006	
31	Chickpea	Iqbal et al., 2006	

Microalgae nutritional advantage: lipids

microalgae provide required HUFA

Fatty acid composition of menhaden oil and microalgae strains from SGI culture collection. (*Pavlova* SGI-609 and *Cyclotella* WT-SGI-E-00293)

Microalgae nutritional advantage: micronutrients

microalgae also represent good or excellent sources of important micronutrients

Micronutrients	Salmonid requirements (mg/kg dry feed)	Algae average (mg in 100g algae or per kg of feed at 10% inclusion)	Algae provides (at 10% in feed it provides % needed)
HUFAs			
DHA Omega-3	10000	640	<i>6</i> %
EPA Omega-3	10000	1200	12%
DHA + EPA (Australia-NZ)	10000		
Vitamins			
Vitamin A and β-carotene	1.35	10.5	777.78%
Vitamin B1 (thiamine)	12.5	2.2	18%
Vitamin B2 (riboflavin)	25	2.5	10%
Vitamin B6 (pyridoxine)	15	0.22	1%
Vitamin B12 (cobalamin)	0.0175	0.06	342.86%
Vitamin C	125	14.3	11.4%
Vitamin E	<i>75</i>	31.6	42 %
Folate	8	0.35	0 %

Microalgae environmental advantage

Water footprint: kg water/kg biofuel

	Water footpring		
Feedstock	kg water/kg biofuel		
Maize	4015		
Sugarcane	3931		
Potatoes	<i>3748</i>		
Soybean	<i>13676</i>		
Switchgrass	2189		
Microalgae	<i>591-3650</i> [†]		
†Range due to variations in recycle rate			

Nutrient footprint: kg nutrient/10 gal fuel

Nutrient	Corn grain ethanol ¹	Soybean diesel ¹	Algae biodiesel ²	Algae w/ recycled biomass ^{2,3}
Nitrogen	7	0.1	5	1.5
Phosphorus	2.6	0.2	0.2	0.2
1 Hill et al 2006				
2 Pate et al 2011				
†Assuming a 70% recycle efficiency				

Possible synergies (Biofuels)

- Biofuels require very large facilities
- Microalgal biofuels may produce large quantities of by-products
 - High in protein
 - Likely defatted: but distillation possible
- Microalgal biofuels will not be here for many years
 - Issues with cost
 - Issues with scale
 - Differences in scale
- Of course, if we solve for biofuels, we will have solved for feeds.

Possible synergies (CO₂ capture)

Examples of microalgal cultures grown on flue gases and waste heat.

Microalgae production at commercial scale Problem of cost

Estimated ranges of costs for microalgal biomass and microalgal products.

	Green water Arthospira		Haematococcus
US\$/kg dry biomass	\$0.10	\$5.00	\$100.00
Production and Processing	None	Minimal	Significant
Cost of 1 kg of			
70% component	\$0.14	\$7.14	\$142.86
30% component	\$0.33	\$16.67	\$333.33
3% component	\$3.33	\$167	\$3,333
1% component	\$10	\$500	\$10,000

Microalgae production at commercial scale

Problem of cost

Predicted relationship between crop value and farm size based on present knowledge.

Microalgae production at commercial scale

Problem of scale

Scale of large microalgal farms. From left to right and top to bottom: Earthrise, Cyanotech, Sapphire and Parry Nutraceuticals/Valensa.

SYNTHETIC GENOMICS*

Synthetic Genomics' Strategy

- Facilities
 - Laboratory and Greenhouse
 - Field station in Imperial County
- Process optimization
 - Field productivity
 - Dilution rate
 - · Batch vs continuous
 - Harvest strategy
 - Lamellar settling
 - Hydrocyclones
 - Flocculation
 - Centrifugation
- Biology optimization
 - Robustness
 - Photosynthetic efficiency
 - Carbon partitioning
- Products and markets

SGI San Diego and Imperial facilities

Growth units

- 20 x 1.9 m² ponds
- 3 x 15 m² ponds
- 3 x 70 m² ponds
- 3 x 192 m² ponds
- 6 x 400 m² ponds
- 4 x 3200 m² ponds
- 7 x 4000 m² ponds
- Several racks with 100 L enclosed PBRs

Other structures

- 2 buildings for control room, offices and general day use (110 m² and 160 m²)
- 2 buildings for laboratory, small scale cultivation, processing and shop space (400 m² and 700 m²)

Microalgae production: R&D scale

Pilot scale facilities for microalgal technology research at Synthetic Genomics.

Greenhouse 100 L PBRs and 1.9 m² ponds

Outdoor 1.9 and 70 m² ponds used for strain robustness

Microalgae production: Production scale

Production scale facilities for microalgal technology research at Synthetic Genomics.

SGI Imperial Valley facility: growth conditions

Very sunny

Average (year) radiation: 5.6 kWhr/m²/d

Winter low: 3.1 kWhr/m²/d

Summer high: 8.0 kWhr/m²/d

Very warm

Winter minima: 5.3°C

Summer maxima: 41.8°C

Very dry

Winter: "wet" season

Natural Microalgae Exhibit Individually Desired Traits

Synthetic Biology technologies required to combine traits, and coordinately channel energy into desired commodity product

Photosynthetic efficiency

- photosystem antenna size
- energy-wasting, non-photochemical processes
- energy coupling reactions
- futile reaction cycles (e.g. RuBisCO)

Carbon partitioning to target molecule

- down-regulate competing pathways
- constitutively up-regulate biosynthetic pathways
- precursor and co-factor supply

Tolerance to production environment

- temperature
- halotolerance
- microbial contaminants & predators

proprietary lipid-accumulating eukaryotic microalgae

Photosynthetic Efficiency Challenge in Mass Culture

natural algae response to changing light environment limits productivity

low productivity

- Algae respond to self shading by "selfishly" building a large light harvesting antenna
- The larger antenna further exacerbates the self shading leaving much of the pond in darkness
- The larger antenna drives saturation of photosynthesis at low light intensities with the excess absorbed light actively dissipated as heat

high productivity

- Algae engineered to attenuate response to changes in light field
- Less light is absorbed and therefore the penetration of light into the pond is deeper
- The smaller antenna saturates photosynthesis at higher irradiance with less absorbed energy wastefully lost as heat

Engineered Algae with Desired Phenotype

SGI has engineered algae for increased light penetration and improved photosynthetic efficiency

same cell density

- One third Wild Type levels of chlorophyll
- Rate of photosynthesis per cell unchanged therefore the photosynthesis per unit chlorophyll is almost three times higher
- Much greater light penetration into culture
- Data confirm modified physiological response to changes in light field

Chlorophyll content per cell (pg/cell)

Wild Type 0.12 Engineered species 0.03

Max. photosynthetic rate (umol O₂/hour/mg chl)

Wild Type 161 Engineered species 405

Optimization: photosynthetic efficiency

Effect of a 50% increase in photosynthetic efficiency (from 2%-left to 3%-right) on algal productivity.

Optimization: carbon partitioning

Areas of targeted modifications for improved carbon partitioning to lipid.

Minimum Production Cost of Algae Biomass - Future

strain productivity improvement single largest cost driver

Current assumes 200 ha facility; 17 g/m2/day, inoculum bioreactors, power plant flue gas at 10 km, 70% CO2 utilization, open pond raceways, chemical floc to 1% + centrifuge, evaporation ponds, land cost at \$8,750/ha, 10 year depreciation, indirect costs of 83%, contingency of 25%

Product and Market

Progression of scale and value

- Need small markets (scale issue) of higher value (1→2)
 - In the feeds area
 - High value ingredients
- Next, larger markets of less value (2→3)
 - Specialty feeds
 - Larval feeds
 - Starting diets
 - Finishing diets
- Finally, commodities (3→4)
 - HUFA

and

Proteins

Summary

- Demand for fish oil and fishmeal is outstripping supply
- Microalgae are a superior source of fish nutrition
- Transformational innovations are required to establish commercially attractive, sustainable alternatives for commodity feed production
- Cost is high but Synthetic Biology technology is driving the cost down by enhancing
 - Photosynthetic efficiency
 - Carbon partitioning
 - Robustness

