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Abstract

Parasitic salmon lice are potentially harmful to salmonid hosts and farm produced lice pose a threat to wild salmonids. To
control salmon lice infections in Norwegian salmonid farming, numbers of lice are regularly counted and lice abundance is
reported from all salmonid farms every month. We have developed a stochastic space-time model where monthly lice
abundance is modelled simultaneously for all farms. The set of farms is regarded as a network where the degree of contact
between farms depends on their seaway distance. The expected lice abundance at each farm is modelled as a function of i)
lice abundance in previous months at the same farm, ii) at neighbourhood farms, and iii) other, unspecified sources. In
addition, the model includes explanatory variables such as seawater temperature and farm-numbers of fish. The model
gives insight into factors that affect salmon lice abundance and contributing sources of infection. New findings in this study
were that 66% of the expected salmon lice abundance was attributed to infection within farms, 28% was attributed to
infection from neighbourhood farms and 6% to non-specified sources of infection. Furthermore, we present the relative risk
of infection between neighbourhood farms as a function of seaway distance, which can be viewed as a between farm
transmission kernel for salmon lice. The present modelling framework lays the foundation for development of future
scenario simulation tools for examining the spread and abundance of salmon lice on farmed salmonids under different
control regimes.

Citation: Aldrin M, Storvik B, Kristoffersen AB, Jansen PA (2013) Space-Time Modelling of the Spread of Salmon Lice between and within Norwegian Marine
Salmon Farms. PLoS ONE 8(5): e64039. doi:10.1371/journal.pone.0064039

Editor: Martin Krkosek, University of Toronto, Canada

Received November 6, 2012; Accepted April 10, 2013; Published May 20, 2013

Copyright: � 2013 Aldrin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Research Council of Norway project PREVENT, "Salmon lice-prevention and treatment," project number 199778/S40. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: magne.aldrin@nr.no

Introduction

Infectious diseases constitute a constant problem in industrial-

ised farming where there typically are both high densities of farms

and high densities of animals within each farm. Disease outbreaks

can have large economic consequences to farming industries, but

can also have severe ecological effects if infections are spread to

and impair the viability of wild animals. Several mathematical and

statistical models within this field have been developed during the

last decades and applied to as diverse diseases as foot-and-mouth

disease, swine fever, bluetongue and infectious salmon anaemia

[1–5]. In all these models, probabilities of infection relative to

distance, often called transmission kernels [1,4], play an important

role.

Salmon lice (Lepeophtheirus salmonis) are parasitic copepods that

live on the skin surface of both wild and farmed salmonids. The

parasite uses rasping mouthparts to feed on mucus, skin and

underlying tissues of its host and thereby causes mechanical

damage [6]. Possible effects of salmon farming on sea lice

infections on wild stocks of salmonids, and hence the viability of

such wild stocks, has evoked a large and contentious debate [7–9].

Nevertheless, the notion that salmon farming does affect local

transmission of salmon lice to wild salmonids [9,10], as well as to

farmed salmonids [11], seems well established. Recent studies also

report that parasiticide-treatment of outwardly migrating salmon

smolts significantly increases their marine survival compared to

non-treated control smolts, suggesting that salmon lice induce

mortality in wild salmonid hosts [12–14]. Due to the potential

impact of salmon lice of farm origin on wild stocks of salmonids,

salmon lice infections on farmed fish are strictly regulated in

Norway [11]. To enforce these regulations, numbers of salmon lice

are counted on samples of farmed salmonids at regular intervals

from all actively producing marine fish farms each month. Salmon

lice abundances from these counts, i.e. the average number of

salmon lice per fish, are reported to a central data base [11].

Measures to control salmon lice infections, i.e. the application of

medical treatments or the use of cleaner-fish to prey on lice, are

also reported to this same data base.

The large spatio-temporal dataset covering salmon lice abun-

dance on salmon farms, and efforts to control these infections,

should give insight into factors that affect farm levels of salmon lice

infections and the contributing sources for such infection. The aim

of the present study was to develop a modelling framework that

could: i) disentangle different contributing sources of salmon lice

infections; ii) estimate functional relationships between expected

salmon lice infections and contributing factors, e.g. the between

farm transmission kernel as a function of seaway distance between

farms [1,4]; and iii) lay the foundation for a scenario simulation

tool to examine the potential spread of salmon lice within and

between salmon farms to assess the impact of control measures.

We developed a stochastic space-time model where the monthly
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salmon lice abundances at all Norwegian salmonid farms are

modelled simultaneously. The model is similar in flavour to

previous models developed by the same group of authors on

infectious salmon anaemia and other salmonid diseases where

farms appear as infected or non-infected [5,15,16]. Salmon lice,

however, differ from these other diseases in that most farms are

infected more or less all the time, but salmon lice abundances vary

both over time and between farms.

The set of salmonid farms is regarded as a network where the

degree of contact between each pair of farms depend on the

seaway distance between them. The observed number of lice in a

given sample of fish is assumed to be distributed according to a

zero-inflated negative binomial distribution. The expected salmon

lice abundance at each farm is modelled as a function of i) the

observed lice abundances in previous months at the same farm, ii)

the observed lice abundances in previous months at neighbouring

farms, and iii) other, unspecified sources of infection. In addition,

the model includes explanatory variables such as seawater

temperature and numbers of fish at each farm. The model was

fitted to data covering all marine salmonid farms in Norway from

June 2003 until the end of 2011.

In the following sections, we first describe the data and then the

model. Then, we present the fitted model and other results, and

finally we draw some conclusions.

Materials and Methods

Salmonid Farming and the Problem of Salmon Lice
During a 30 year period from 1980 to 2010, annual production

of farmed salmonids, i.e. Atlantic salmon (Salmo salar) and rainbow

trout (Onchorhyncus mykiss), has grown from marginal to around one

million tonnes in Norway [17]. For comparison, the total annual

yield of wild Atlantic salmon and sea trout (Salmo trutta) in Norway

was estimated at 850–1400 tonnes between 2000 and 2008 [18].

The production of salmonids consists of a freshwater juvenile

phase, followed by a marine grow out phase, which is the focus of

this study. Marine salmonid farming is regulated through a system

of legal concessions authorised by the Norwegian Directorate for

Fisheries (DFF; http://www.fiskeridir.no). All farms are registered

with a geographic reference in the Aquaculture register, which is

available at DFF’s website. For marine farms that actively produce

salmonids, it is mandatory to report key statistics on their fish

stocks, fish health related statistics and seawater temperature at

3 m depth, on a monthly basis.

The production of a salmonid cohort on a farm typically

initiates by stocking juvenile smolts to net-pens on the farm in

spring or in the autumn. The net-pens allow free water exchange

with the surroundings. After stocking, the fishes are on-grown on

the farm for roughly 1.5 years and then slaughtered. The

production time varies slightly according to the weight of the fish

at slaughter, seawater temperature etcetera. On a given farm, only

fish of a given year class are produced. After slaughtering, it is

mandatory to fallow the farm location for a short period before

stocking a new cohort of salmonids. Occasionally fish may be

moved from one farm location to another, in which case a new

farm will initially report fish weights larger than juveniles.

Sea lice are naturally occurring parasitic copepods that spread

by planktonic larvae. Farmed salmonids are infected by water flow

through the net-pens. The parasites live on the surface of the fish

and feed on mucus, skin and underlying tissues of its host [6]. Sea

lice infections on farmed salmonids are dominated by the salmonid

specific salmon louse, but may also be by the generalist parasite

Caligus elongatus. However, regulations on reporting requirements

regarding sea lice infections on farmed salmonids in Norway (see

below) are only directed at the salmon louse. Hence, we term the

parasitic infections for salmon lice in this paper. The salmon louse

has a life cycle consisting of three planktonic larval stages, of which

the third copepodite-stage may attach to the surface skin of a

salmonid host by a frontal filament. Upon infection, the parasite

develops through four consecutive stages of attached larvae,

followed by two pre-adult stages of lice that may move about on

the surface of the fish (mobile stages), and finally adult males and

females that also are mobile. Sea lice infections on farmed

salmonids are regulated through a system of maximum thresholds

of abundance of mobile stages. To enforce these regulations,

farmers are instructed to count salmon lice on farmed salmonids at

regular intervals. Counts are reported once a month to a database

as the mean number of lice per fish within two stage categories: i)

adult females, and ii) all other mobile stages (pre-adults and adult

males). The farmers are instructed to report the highest mean

count of adult females during a given month. In the present model,

we sum the two categories of salmon lice and term this salmon lice

abundance. The mean count of salmon lice from a sample of 20

fish from one net pen (before August 2009) or the mean of samples

of multiples of 10 fish from half of the net-pens (from August 2009)

was reported. Details of the sampling, counting and reporting

procedures for salmon lice infections on farmed fish are given in

Jansen et al. ([11]; and the Electronic supplementary material

therein).

Data
The present data include all 1401 Norwegian marine fish farms

with standing stocks of either Atlantic salmon or rainbow trout

(salmonids) in any month from February 2003 to December 2011.

The data is an updated version of the data presented in Jansen

et al. [11],who analysed data up to 2010 in a study based on a

different modelling approach than the present.

The data from the first four months were only used to construct

lagged explanatory variables, whereas the model was fitted to data

from June 2003 and onwards. In the following description, we

therefore only summarise data from the latter period. The number

of active farms was then reduced to 1361. Each salmonid farm

normally had several consecutive periods of production of fish

populations, interrupted by periods of fallowing (no fish on the

farm). The fish population within a production period is termed a

cohort and the present data consists of 4 255 cohorts with a total of

58 623 farm-months of cohort production. Farms produced

between one and nine consecutive cohorts. For each salmonid

farm, the salmon lice abundance on a sample of fish is obligatory

to report to the responsible Norwegian Food Safety Authority. We

assumed that the number of sampled fish always was 20. The

reported salmon lice abundances were therefore multiplied by 20

and implemented as the response variable in the present model.

Hence, we ignored that the number of fish sampled from August

2009 could be both less and more than 20 (see previous section),

but note that this did not affect the mean number of lice per fish.

However, lice abundance data were missing for about 3% of the

total number of months with farmed fish, giving 56 836 farm-

months with reported salmon lice abundance. Salmon lice

abundances amount to between 0 and 7 in 95% of the farm-

months, with a mean of 1.1 lice per fish. The distribution of

salmon lice abundance is profoundly skewed, being exactly 0 in

32% of the farm-months, whereas the highest reported abundance

is 163 lice per fish. The black curves in Figure 1 show how the

observed lice abundance vary over the data period averaged over

all farms and for three selected farms. The lice counts have a clear

seasonal pattern driven by the seawater temperature. The farm-

wise panels also show how the fish cohorts can be distributed over

Space-Time Modelling of the Spread of Salmon Lice
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the data period. Farms 1 and 2 in the figure have periods where

the farms are active, but the salmon lice counts are missing. This is

shown by predictions (red line) but missing observations (no black

line) in the time plots.

The geographic location of each farm and pairwise seaway

distances between all farms were compiled from Jansen et al. [11].

The seaway distance between two farms is defined as the shortest

distance through water. The various salmonid farms had between

zero and 31 other salmonid farms within a seaway distance of

10 km (median five). Figure 2 shows the locations of all Norwegian

salmonid farms that were actively producing salmonids at some

month during the study period, with a closer look at the 37 farms

that were active in the Sognefjorden area. Of the latter, 19 farms

were actively producing in October 2011.

Monthly figures of several other variables were also given

separately for each farm. Each farm could produce either Atlantic

salmon or rainbow trout, or both species at the same time. We

calculated the monthly proportion of Atlantic salmon biomass for

each farm, which was 91% on average. The monthly average

weight of fish was between 100 g and 5.8 kg for 95% of the farm-

months, with a mean of 2.0 kg. The mean number of fish per farm

was 530 000 (95% between 200 000 and 1.6 million). The mean

seawater temperature at farms was 9.1uC (95% of all temperatures

was between 3.4uC and 16.3uC). The seawater temperature was

missing for 2.3% of the farm-months. Each missing temperature

was imputed by a weighted mean of all observed temperatures the

same month, with weights proportional to the inverse of the

seaway distance to the current farm with the missing temperature.

For about 4% of the farm-months, there were no fish at the same

farm in the previous month in combination with the mean fish

weight being less than 250 g. This indicates that the fish cohort

was stocked for the first time on the given farm. Furthermore, for

about 2% of the farm-months, there were no fish at the same farm

in the previous month, but the mean fish weight was equal to or

larger than 250 g. This indicates that the fish cohort had been

relocated, i.e. moved from another marine farm. Medical salmon

lice treatments were applied in 15% of the farm-months. Cleaner

fish of the family Labridae were also applied at several farms [11],

but we did not have sufficiently reliable data on the use of these,

and we therefore ignored the use of cleaner fish in our modelling.

Nor did we have sufficient data on salinity, which is known to

affect the infection process of salmon lice [19].

Figure 1. Time plots of observed (black) and one-month-ahead predictions (red) of salmon lice abundance averaged over all farms
(panel a), and for three selected farms (panels b, c and d).
doi:10.1371/journal.pone.0064039.g001

Figure 2. Location of salmonid farms. The left panel shows marine farms in the enlarged Sognefjorden area that were actively producing
salmonids between June 2003 and December 2011, with observed salmon lice abundance indicated for those active in October 2011. The right panel
shows marine farms that were active in the period June 2003 - December 2011 in the whole of Norway.
doi:10.1371/journal.pone.0064039.g002
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Overview of the Model
Here we first describe the main features of the present salmon

lice model, and then go into more detail. The model includes all

actively producing Norwegian marine salmonid farms simulta-

neously, but the counted number of salmon lice at a given farm in

a given month is modelled conditionally upon the situation at the

current farm of interest and all other farms in previous months.

Now, consider farm i at time or month t, and let mit denote the

expected abundance of salmon lice. This expectation is modelled

as a function of i) observed lice abundances in previous months at

the current farm, ii) observed lice abundances in previous months

at neighbouring farms, and iii) other factors such as seaway

distances to neighbouring farms, seawater temperatures etcetera.

The response variable is constructed from the reported salmon

lice abundances by multiplying it by the number of fish sampled,

which is always assumed to be n~20, see previous section and

Jansen et al. [11]. The response variable is denoted by yit, and

modelled as a zero-inflated, negative binomially distributed

variable [20] with expectation n:mit. This means that the values

of yit tend to be zero more often than can be modelled by a

negative binomial distribution alone. Let pz
it denote the probability

of excess zero observations in this compound distribution. These

excess zeroes come in addition to those expected from the negative

binomial part of the distribution. Thus, yit comes from a negative

binomial distribution with probability 1{pz
it, and has an excess

zero value with probability pz
it. Let further mNB

it denote the

expectation in the negative binomial part of the distribution.

Then, the expectation of yit can be expressed as

E(yit)~n:mit~(1{pz
it)
:mNB

it : ð1Þ

Our main focus is on modelling the expected salmon lice

abundance mit, and we give a detailed description of the model for

mit in the next subsection. Furthermore, the probability of excess

zero observations is modelled as a function of mit and a few other

factors. Then, according to Eq. (1), the expectation in the negative

binomial part of the compound distribution is given as

mNB
it ~n:mit=(1{pz

it). The negative binomial distribution has one

parameter in addition to the expectation, here called Rit, and this

is also modelled a function of mit. We present the sub-models for pz
it

and Rit in Appendix S1, since these only affect the shape of the

distribution of yit, which is not our focus here. The parameter R

has often been denoted k in parasitological literature [21,22].

The motivation for using a negative binomial distribution begins

with assuming that the number of lice counted on one fish,

conditioned on the expected lice abundance, is Poisson distributed.

However, we expect large variability from fish to fish, where

typically some fish carry few salmon lice and some fish carry many.

The negative binomial distribution is well suited to model such

over-dispersed Poisson counts. Finally, if we sum the individual

counts over n~20 fish, the total number of counted lice is also

negative binomially distributed. However, when analysing the

data, we found that there was an excess frequency of zeroes, which

lead us to the zero-inflated, negative binomial distribution.

The zero-inflated, negative binomial distribution was also used

by Jansen et al. [11], who modelled the same data as the present,

although only updated up to December 2010. However, several

other aspects of their approach differ from ours; i) they did not

model all farms simultaneously in a network, ii) they ignored the

lice counts at neighbouring farms, and iii) they had one model for

the excess zeroes and another for the expectation in the negative

binomial distribution, yielding a complex formula for the expected

lice abundance, whereas we model the latter explicitly.

The Expected Lice Abundance
The model for the expected lice abundance at farm i in month t

has the following additive-multiplicative form:

mit~Sit
:ksusc

it
:(lw

itzld
itzlo

it): ð2Þ

The two multiplicative terms in Eq. (2) are:

N Sit is an ‘‘at-risk’’ indicator that is 1 when farm i is active (has a

positive number of farmed fish) at month t and 0 otherwise.

N ksusc
it is a factor proportional to the susceptibility of farm i. It

depends on explanatory variables that characterise the

conditions for the fish at farm i at month i. Some explanatory

variables are common for all farms (e.g. season), whereas

others are farm-specific (e.g. seawater temperature). The farm

specific term has the form

ksusc
it ~ exp (

X
k

bsusc
k xsusc

ikt ), ð3Þ

where xsusc
ikt denotes explanatory variables for farm i at month t

and bsusc
k denotes corresponding regression coefficients. See

Table 1 for a list of variables included in the final model.

The three additive terms represent three possible sources of lice

infection:

1. lw
it represents infection within the current farm of interest.

2. ld
it represents infection from neighbouring farms, depending on

among others the seaway distances to these farms and on their

lice abundances.

3. lo
it represents infection from other, non-specified sources, for

instance a reservoir of infection on free roaming salmonids.

We assume that the infection pressure from each source can be

added. Details on how each of these terms are modelled are given

in the following.

Infection within a farm is modelled as

lw
it~ yi(t{1)=nz

Xl~L

l~2

rly
0
i(t{l)=n

 !a

:Si(t{1), ð4Þ

where

N y’i(t{l) is equal to yi(t{l) if farm i has been active in all the

months from t{1 to t{l, but is zero if the farm has been in-

active in any of these months, and

N a is a positive parameter that allows for a non-linear

dependency of the previous months’ lice counts.

N rl ,l~2, . . . ,L are parameters that account for the effect of

previous lice abundances in sequential time steps. The term

(yi(t{1)=nz
Pl~L

l~2 rly
0

i(t{l)=n) divided by 1z
Pl~L

l~2 rl is a

weighted sum of the lagged observed lice abundances.

Allowing for more than one lag may be useful, since the

observed lice abundance is based on counts on small samples

of fish, hence using several months may reduce the sampling

uncertainty.

Space-Time Modelling of the Spread of Salmon Lice
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The term representing infection from neighbouring farms is summed

over the separate contribution from all other farms and modelled

as

ld
it~

X
j=i

exp (w0zw1
:(d

w2
ij {1)=w2):kinf

j(t{1)

: yj(t{1)=nz
Xl~L

l~2

rly
0
j(t{l)=n

 !a

:Sj(t{1):

ð5Þ

Here,

N w0 quantifies the importance of neighbouring infection

compared to the other two sources of infection.

N dij is the seaway distance between farms i and j.

N w1 and w2 are parameters that reflect the effect of the seaway

distances to the neighbouring farms. The transformation

(d
w2

ij {1)=w2 is the well known Box-Cox transformation, which

allows for many different shapes of the distance function

(Figure 3). When w2 approaches zero, the Box-Cox transfor-

mation becomes log (dij), where 1og here and elsewhere

means the natural logarithm, and the distance function then

becomes proportional to d
w1

ij . When w2~1, the distance

function becomes proportional to the exponential function

exp (w1
:dij).

N k
inf
jt is a factor proportional to the infectiousness of farm j,

depending on explanatory variables that characterise the

neighbouring farm j, for instance the number of fish. The

infectiousness term has the form

kinf
jt ~ exp (

X
k

binf
k x

inf
jkt ), ð6Þ

where, as before, x
inf
jkt denote explanatory variables and binf

k

denote corresponding regression coefficients. See Table 1 for

an overview of variables included in the final model and the

Table 1. Estimated parameters in the expected abundance mit with 95% confidence intervals for the selected model, with
corresponding relative BIC values for selected parameters.

Relative BIC
if deleted

Parameter Variable name or
Farm
specific Parameter

group parameter description variable symbol Est. Lower Upper

misc. Other sources c 0.076 0.068 0.084

-’’- Lagged lice counts r2 0.076 0.062 0.090

-’’- -’’- r3 0.025 0.016 0.034

-’’- -’’- r4 0.022 0.013 0.031 39

-’’- Non-linear dependency a 0.650 0.636 0.665

-’’- Sea distance function w0 21.444 21.605 21.283

-’’- -’’- w1 20.351 20.272 20.430

-’’- -’’- w2 0.568 0.478 0.658

susc. intercept no bsusc
k 20.385 20.439 20.332

-’’- (t{103=2) -’’- -’’- 2:53:10{3 1:58:10{3 3:48:10{3

-’’- (t{103=2)2 -’’- -’’- 5:44:10{5 4:04:10{5 6:84:10{5

-’’- (t{103=2)3 -’’- -’’- {1:50:10{6 {2:02:10{6 {0:99:10{6 22

-’’- (temp{9) yes -’’- 0.0979 0.0937 0.1020

-’’- (temp{9)2 -’’- -’’- 20.0047 20.0056 20.0038 91

-’’- (latitude-64) -’’- -’’- 0.0084 0.0042 0.0127 4

-’’- (temp-9)6(latitude-64) -’’- -’’- 0.0124 0.0112 0.0135 480

-’’- tempt{tempt{1 -’’- -’’- 20.0220 20.0278 20.0162 45

-’’- log(weight) -’’- -’’- 0.215 0.201 0.228 967

-’’- Stocked -’’- -’’- 20.978 21.115 20.841 188

-’’- Relocated -’’- -’’- 0.218 0.101 0.336 4

-’’- Salmon proportion -’’- -’’- 0.130 0.083 0.176 20

inf. log(number of fish) yes b
inf
k

0.258 0.191 0.326 57

misc.: Miscellaneous parameters.
susc.: Parameters related to the susceptible farm.
inf. : Parameters related to the infectious farm.
Est.: Estimate.
Lower: Lower bound of 95% confidence interval.
Lower: Upper bound of 95% confidence interval.
doi:10.1371/journal.pone.0064039.t001
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Results section for other variants of the model that were

investigated.

Infection from other sources, lo
it, is currently modelled as a constant

c, and as such acts as an intercept term. This can, however, be

modified to a more complex form, for instance by including

functions of space and time.

Relative Contribution from Each Source
For each farm and each month, the expected lice abundance

can be decomposed into the relative contribution from each of the

three infection sources. Summing over all farms and months gives

the mean relative contribution from each source. For instance,

rw~(
X

t

X
i

Sit
:ksusc

it
:lw

it )=(
X

t

X
i

mit) ð7Þ

is the mean relative contribution within a farm. The mean relative

contribution from neighbouring farms, rd , and from other sources,

ro, are defined similarly.

Estimation
The unknown parameters consist of a, c, w0, w1, w2, r2, . . . ,rp

and all b-s, joined into a parameter vector h. The maximum

likelihood estimates of h was found by maximising the log

likelihood of the data. An expression of the log likelihood is given

in Appendix S1.

The log likelihood was maximised using the function optim in the

statistical software R, using the method of Byrd et al. [23] for

optimisation. Parameter uncertainties were based on the observed

information matrix [24], and are reported as 95% Wald

confidence intervals.

We investigated several variants of this model, with different

explanatory variables included and with some parameters set to 0.

For model selection, we used the Bayesian information criterion

(BIC) [25,26]. This criterion balances the fit of the data to the

number of parameters by minimising {2ll(h)z log (m), where

ll(h) is the log likelihood and m is the total number of observations

and q the number of parameters. For some important explanatory

variables, we considered second and third order terms as well as

cross products between pairs of variables. We followed a strategy

where main effects were included first, and second higher order

effects or cross products were included if this improved the BIC

value. Explanatory variables that were included in second or third

order terms or cross products were centred to reduce correlations

between the variables. We could alternatively have used Akaike’s

Information Criterion (AIC) [26,27] for model selection, which

penalises the number of parameters less than BIC and therefore

tends to give models with more parameters than when BIC is used.

Choosing between BIC and AIC is primarily a matter of taste. We

chose BIC because our dataset was large and hence we expected to

end up with a rather complex optimal model also by using BIC.

Medical lice treatment was applied in 15% of the farm-months,

which in principle should lead to reduced lice counts after

treatments. It would indeed be useful if the model could be used to

quantify the effect of such treatments. However, there is a dual

relationship between treatment and lice counts; a high lice count

will often induce a following treatment, whereas a treatment may

result in lower lice counts. We don’t know the actual dates for

neither lice counts nor treatments, so it is not known for certain

whether a treatment was applied before or after the corresponding

lice count. Furthermore, we do not know what type of

chemotherapeutic treatment that is used in each case. This makes

it difficult to interpret the estimated effect of medical treatment.

Therefore, we first consider a model without medical treatment as

a factor, but then return to a model that includes medical

treatment later on.

We estimated the model by fitting it to the observed lice counts

from the 103 months between July 2003 and December 2011. We

investigated models with up to p~4 lags of previous lice counts, so

the four months of data from February to June 2003 were only

used to construct these lagged lice counts. As mentioned in the

Data Section, 3% of the lice counts were missing. It is reasonable

to believe that these were missing at random in the context of

Little and Rubin [28], and the corresponding farm-months were

therefore ignored in the likelihood. However, for the lagged lice

counts, each missing value was imputed by the last observed value

within the same cohort, if any. If this was impossible, the missing

value was imputed by the mean of all observed lice counts in the

current month.

Results

We first consider a model without medical treatment. Then, we

investigated several variants of the model and selected the model

with the minimum BIC value. Figure 1 shows time plots of the

estimated expected number of lice per fish and the corresponding

observed lice abundance averaged over all farms and for three

selected farms. In our model, the expected numbers of lice per fish

are the same as one-month-ahead predictions, and there is

therefore a tendency for the expected values being shifted to the

right compared to the observations. The selected model is given in

Table 1, with estimates and 95% confidence intervals for each

coefficient that enters the model for the expected salmon lice

abundance. Estimates for eight additional coefficients in the sub-

models for the excess zero probability and Rit are given in Table A

in Appendix S1. For some coefficients, the table also shows how

much the BIC value would increase if this coefficient was excluded

(set to 0) from the model, here called the relative (to the main

model) BIC values. A high value of the relative BIC indicates that

the corresponding variable improves the model fit significantly.

Figure 3. A selection of possible shapes for the relative effect
of the seaway distance for various values of the w2 parameter.
doi:10.1371/journal.pone.0064039.g003
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Some effects that are handled by groups of explanatory variables,

for instance the seawater temperature effect, and the relative BIC

values for such effects are presented in the text below. The

confidence intervals are rather tight, and all parameters are highly

significantly different from natural reference values of 0 or 1 (the

latter is relevant for the w2 parameter in the Box-Cox transfor-

mations, where a value of 1 implies linearity on the exponential

scale, i.e. an exponential distance function). We have therefore not

included any p values in the table.

In the following presentation, we go through the different parts

of the model, starting at the top of Table 1. The parameter c~lo
it,

representing infection from other, non-specified sources (Eq. (2)),

has to be interpreted relative to infection within and between

farms. Infection from other, non-specified sources accounted for

only 6% of the lice abundance, as calculated from Eq. (7).

Infection from neighbourhood farms accounted for a further 28%

of the lice abundance, whereas the remaining 66% was attributed

to infection within farms. The confidence intervals for these

proportions are all narrower than +1:5 %. Note that the latter

includes both within farm infection of infectious copepodite-stage

salmon lice and pre-adult and adult stages of lice that survive from

previous counts.

All four lags of observed lice abundance (Eq. (4) and Eq. (5))

were selected. Deleting the last three lags would increase the BIC

value by 688, so including these lags improves the fit considerably.

However, the estimated values of r2, r3 and r4 sum up to 0.12, so

these lags only account for 11% (0:12=½1z0:12�) of the weighted

observed lice abundance.

The estimated value of a ((Eq. (4) and Eq. (5)) was 0.65, which

means that the expected lice abundance was not proportional to

lagged observed lice abundance. Doubling the lagged observed lice

abundance corresponds to a 57% increase in the expected lice

abundance (since 20:65~1:57).

The infection pressure from neighbourhood farms decreased

sharply by increasing seaway distance (Figure 4). A value equal to

1 for the parameter w2, which controls the Box-Cox transforma-

tion, would correspond to an exponential distance function, which

we assumed in previous work on infectious diseases with less

informative data [5,16]. However, w2 was estimated to be much

lower than 1, which gives a much steeper curve than the

exponential.

We continue by commenting on the effect of explanatory

variables included in the factor ksusc
it (Eq. (3)). All the variables

included here were measured in the current month t, except the

seawater temperature difference between month t and t{1. The

ksusc
it term includes a function of time common to all farms,

represented by a third order polynomial. Deleting the time trend

(represented by three terms) from the model would increase the

BIC value with only 46, so the time trend is not among the most

important factors for improving the model fit.

The factor ksusc
it is also a function of several characteristics of the

susceptible farm. The most important is the seawater temperature,

which is represented by a second order polynomial of temperature,

a cross product of temperature and latitude and a difference

between the temperatures at month t and t{1. Deleting these

temperature terms from the model would increase the BIC value

with 2395, implying that water temperature is a major predictor of

salmon lice abundance. Figure 5a) shows the estimated combined

effects of the seawater temperature and the latitude for farms at

60u North (close to the city of Bergen) and 68u North (in the

Lofoten area). The seawater temperature dependency was much

stronger in northern Norway than in southern Norway. In

addition, in southern Norway, the effect flattened out when the

Figure 4. Estimated relative effect of the seaway distance.
doi:10.1371/journal.pone.0064039.g004

Figure 5. Estimated relative effects of the seawater temperature (a), of the mean fish weight (b) and of the number of fish at
neighbouring farms (c).
doi:10.1371/journal.pone.0064039.g005
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seawater temperature reached about 14uC. There was also a

smaller, but statistically significant, effect of the seawater

temperature increase from the previous month, which reduced

the expected lice abundance slightly. In practice, this means that

the effect of the nominal seawater temperature in periods with

increasing seawater temperatures (typically spring and summer)

differs from that in periods with decreasing seawater temperatures

(autumn and winter).

The mean fish weight at susceptible farms is a very important

explanatory variable, with a relative BIC value of 967. Since it

enters in Eq. (3) as the logarithm of the mean fish weight, it has the

form w
bsusc

it after taking the exponential, where wit is the mean fish

weight and bsusc the regression coefficient, which was estimated to

be 0.215. Figure 5b) illustrates the effect of the mean fish weight.

When a farm was active in month t, but not in month t{1, the

fish cohort at the farm was considered as stocked if the mean fish

weight was less than 250 g and relocated otherwise. This was

modelled by including corresponding indicator variables in Eq. (3).

Remember that previous lice counts in this case is 0. If a fish

cohort was stocked, its expected lice abundance was reduced by

62% (since 1{ exp ({0:978)~1{0:38~0:62) compared to a

farm that was active in the previous month, but with 0 observed

lice abundance. On the other hand, if a fish cohort was relocated,

the comparable expected lice abundance increased by 24%

(exp (0:218){1~1:24{1~0:24). This is probably because relo-

cated fish bring with them infection.

The expected lice abundance for a salmon cohort was 14%

(exp (0:130){1~1:14{1~0:14) higher than for a cohort of

rainbow trout, if they had the same lagged observed lice

abundance and everything else being equal.

The number of fish was the only characteristic of the infectious

farms that was included in the sub-model for infectiousness (Eq.

(6)). The infection pressure from neighbourhood farms increased

by increasing numbers of fish at such farms since

f
binf

jt ~ exp (binf : log (fjt)), where fjt is the number of fish at a

neighbouring farm and binf the regression coefficient, which was

estimated to be 0.258. Figure 5c) illustrates the effect of the

number of fish at neighbouring farms.

We finally report the results for models including medical lice

treatment. Extending Eq. (3) with an indicator variable for medical

treatment in the current month improved the BIC value with 352.

However, the estimated coefficient was 0.28 (95% confidence

interval from 0.25 to 0.31), which is the opposite sign of the

expected causal relationship. If we instead include an indicator

variable for medical lice treatment in the previous month, the

estimated coefficient was 20.34 (95% confidence interval from

2.37 to 20.31), with an improvement in BIC value of 435. Hence

medical lice treatment is potentially an important explanatory

variable, but until we get more information on the timing and

nature of medical treatments, this effect is not trustworthy. It does,

however, make sense to include treatment in the previous month

in the present data. The salmon farmers are instructed to report

the highest abundance counted during a month and it is likely that

this count is obtained before a potential medical treatment in a

given month. Nevertheless, there is probably still some bias in the

estimated effect of medical treatment. Inclusion or exclusion of

medical treatment did not, however, substantially affect estimates

of other parameters in the model (Table B in Appendix S1).

Discussion

The main structure of the present model is similar to models we

have applied previously for viral diseases in salmonid farms

[5,15,16] and is in addition inspired by models applied for other

animal diseases [1–3], in that the distances to neighbouring farms

as well as conditions at these farms are important factors for the

infection pressure. However, the stochastic modelling differs,

which is natural since the response data are different. The viral

infection data are binary, i.e. a farm is considered to be infected or

non-infected, whereas the salmon lice infection data consist of

counts that may take positive values and that are available for

every farm-month. This results in a comparatively informative

dataset, which has given us the opportunity to account for many

different factors and model some of them in detail. Our model also

has similarities to models used for human infections. For instance,

Held and Paul [29] modelled the monthly number of laboratory

cases of influenza in 140 districts of Southern Germany by a

spatio-temporal negative binomial regression model, taking into

account infection within and between regions (termed epidemic

components) and an additional external infection source (called

endemic component).

The model can be seen as a generalisation of vector

autoregressive models [30], which are widely used in areas such

as econometrics: Let yt denote the nf -dimensional vector of

salmon lice counts for all farms in month t, nf being the number of

farms. If the parameter a in Eq. (4) and Eq. (5) is exactly 1, the

expected lice counts at month t is a weighted sum of the previous

lice counts up to L lags back. This can be written as

E(yt)~c0tz
Xl~L

l~1

Wltyt{l , ð8Þ

where c0t is an nf -dimensional vector of time-varying farm-specific

intercepts representing infection from other, non-specified sources,

whereas Wlt,l~1, . . . ,L are time-varying (nf |nf ) matrices, where

the diagonal represents within-farm infection and the off-diagonal

elements represent between-farm infection.

The present modelling approach gives insight into the different

contributing sources of salmon lice infection, as well as factors that

affect lice abundance. Within farm infection was the dominating

source of infection, accounting for 2/3 of the additive contribution

to salmon lice abundance. The large within farm contribution to

infection may partly be due to survival of pre-adult and adult lice

over consecutive counts, since these stages are constituents of this

internal source in addition to infectious copepodite-stage salmon

lice produced within the farm stocks of salmonids. In contrast, the

external sources of infection for a given farm constitute only

infectious copepodite-stage salmon lice produced externally and

transported passively with the water current. It is also important to

note that the contribution from the different sources of infection

will vary over time and space. As smolts are transferred from

freshwater to marine waters, for example, they are free of salmon

lice. Transmission of infectious copepodites will then only come

from external sources. Hence, externally produced infection,

which depends primarily on the density of salmon lice in

neighbouring farms in the model, are important for seeding

susceptible farm populations of salmonids with infection while the

on-farm abundance of reproductive lice is low. The relative

contribution from the within farm source of infection increases

following the development of reproductive lice, and this source

seems mainly responsible for amplifying and sustaining farm

populations of salmon lice. The large contribution from within

farm infection implies that the average farm primarily depends on

itself in avoiding high levels of salmon louse infections. This, we

argue, has important implications for the control and management

of salmon lice. Due to the importance of self-inflicted infection, the
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farmer should be motivated to control infection levels of

reproductive lice to minimise the production of infectious

copepodites. From a management point of view, it is reasonable

to hold the farms responsible for keeping levels of reproductive lice

low, to minimise their contribution to local infection pressure to

wild fish or neighbourhood salmon farms.

The external unknown source of infection accounted for only

6% of the additive contribution to salmon lice abundance. This

source may represent infection originating from wild salmonids

[9,31], or alternatively escaped farmed salmonids [32], but which

we do not have information on in the present study. The external

unknown source is modelled with fewer parameters than the other

sources of infection, and it is possible that it would account for a

larger proportion of the infection if a more flexible function was

used. However, we did not find any logical reasons to do so. The

low contribution from the unknown external source also agrees

with earlier suggestions that farmed salmon must be the

dominating host of salmon lice in Norwegian coastal waters due

to the large population size compared to wild stocks [11,32].

Infection from external neighbourhood farms accounted for the

final 28% of the additive contribution to salmon lice abundance.

The contribution to a given farm by a neighbourhood farm in the

model is shaped by the functional relationship between the relative

risk and seaway distance between farms (Figure 4). Compared to

the exponential function used in previous models [5,15,16], the

present relative risk decreases steeply at low but increasing

distance to neighbourhood farms, but levelled off at higher

relative risks for intermediately distant neighbourhood farms. We

interpret this to imply that i) very close farms on average interact

intensively with respect to salmon lice infection, and ii) that the

number of intermediately distant neighbourhood farms and their

levels of infection are important for expected salmon lice

abundance. The latter probably reflects the effect of being located

in areas of intensive salmon farming [11]. The function describing

the relationship between infection from neighbourhood farms and

distance represents an expression of a transmission kernel for

salmon lice transmission between neighbourhood farms that can

be used to simulate the spread of infection between farms and

assess the impact of different control measures. Such transmission

kernels are key elements of models designed to examine scenarios

for the spread and control of a range of different livestock diseases

(e.g. [4]). To our knowledge, this is the first transmission kernel

estimated for metazoan parasites from an extensive system of farm

populations. It is worth noting, however, that the shape of the

function describing the transmission kernel for salmon lice

probably varies in space and time, for example influenced by

the temperature dependent duration of the planktonic phase of the

louse life cycle [33], and local hydrodynamics [34].

The large body of data used to parameterise the present model

yield estimates with relatively tight confidence intervals. The

reports of salmon lice abundance, however, are highly skewed and

zero inflated, implying that modelled expected abundance of lice

will have relatively large uncertainty while predicting individual

lice reports. It is also worth noting that the farmers are instructed

to report the highest count during a month such that the modelled

expectations should tend to be overestimates of the true lice

abundance at corresponding times. In addition, there is one

general characteristic of the data that we suspect may be

confounded by the regulation regime authorised by the legal

authorities in Norway [11]. For the most influential factors in the

model, effects seem relatively reduced for factor-values that imply

expectations of high salmon lice abundance, i.e. effects are less

than proportional to changes in the factors. This is apparent for

example at especially high temperatures in the south, for large fish

and for neighbourhood farms with large numbers of fish (Figure 5).

Bearing in mind that the regulations on salmon lice infections

focus on maximum legal thresholds of parasite abundances on

farms, we anticipate that control efforts like the use of cleaner fish

or medical treatments counter further increases in infection levels

as lice abundances exceed legal thresholds. Since we cannot fully

account for control efforts with the present resolution of data, this

type of confounding related to legal thresholds of infection is to be

expected. On top of this, we suspect that there may also be some

underreporting of high salmon lice abundance. For example, the

probability of finding a given salmon louse on a fish, i.e. the

sensitivity of the counting procedure, probably decreases with

increasing surface area to search on large fish. An implication of

such potentially uncontrolled effects is that the model would be less

predictive for high than for low lice abundance. Higher resolution

of the data concerning timing and the nature of control measures,

along with increased knowledge on the dynamic effects of different

measures, are aspects that would improve the predictive capability

of the present approach.

To conclude, we present a stochastic spatio-temporal model for

salmon lice infection on farmed salmonids in Norway. We

emphasise important insights that the model provides with respect

to different sources of infection and how salmon lice abundance is

affected by different environmental -, host related - and parasite

related factors. In addition, we address control measures such as

medical treatments and the use of cleaner fish, but point to

shortcomings of the data to fully account for control measures at

present. The present modelling framework lays the foundation for

development of future scenario simulation tools for examining

transmission and abundance of salmon lice on farmed salmonids

under different control regimes. From 2012, the reporting

procedures for salmon lice infections and medical treatments have

changed from a monthly to a weekly frequency. With this

increased time resolution we foresee that we can estimate more

trustworthy effects of medical treatments and other control

measures. This will benefit the prospects of applying the present

model as a mathematical laboratory to investigate effects of

complex and expensive actions before they are implemented in

practice.
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7. Krkošek M, Ford J, Morton A, Lele S, Myers R, et al. (2007) Declining wild

salmon populations in relation to parasites from farm salmon. Science 318:

1772–1775.
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