

Biråstoff som bidrag for et bærekraftig fiskefôr

Kjell Måsøval BioMar AS

Sustainability formulation - The BioSustain index

- Eco index of raw materials Ei
 - ✓ Compares and scores every single raw material on relative ecological load (compared to wheat)
 - ✓ Indicates environmental impact of raw materials (RMs)
- BioSustain index of feeds BSi
 - ✓ Total sum of weighted Eco indexes in a product
 - Due to inclusion levels of RMs (RM x Ei)
 - ✓ Enables feed formulation on relative environmental load.
 - May indicate high or low eco-efficient score when used in EEM
 - ✓ Basically for internal use
- Eco-Efficiency Analysis Manager Online EEM
 - ✓ Web client for comparing product recipes on eco-efficiency
 - ✓ Breakdown of feeds to uncover RM energy consumption, RM GWP, etc.
 - ✓ For internal and external use!

Eco-Efficiency Analysis Manager

- Online portal

- Internet portal for breakdown and analysis of raw materials and recipes
 - ✓ Eco-profiles of RMs and recipes, specific breakdown e.g.
 - GWP emissions
 - C-track (carbon footprint)
 - ✓ Eco-efficiency of feeds
 - Eco-efficiency portfolio, costs included
- Eco-profiles of all RMs allow a complete breakdown of fish feeding history
- Recipes can be directly compared, both post and pre feeding

Use of by-products

-example (fishmeal/fish oil made from trimmings or silage)

Product	CPK 75	CPK 200	CPK 500	CPK 1000	CPK 2000	CPK 3500
Substitution of fishmeal (%)	12	19	30	50	50	50
Substitution of total oil (%)	50	50	64	50	45	51

Allocation of environmental impact between main product and by-product

Price2 * Volume2

Price1 * Volume1 + Price2 * Volume2

* Common environmental impact

Eco-Efficiency Analysis Manager Online Biomar Fish Feed 2009

Logged in as biomar1
Logout

customer benefit: feed produc	tion for	1 kg fis	sh sustainable	fishing on	▼		About the Manager
last developmental stage cons	sidered 6	▼	sustainable	soy on	▼		
fish mortality rate		0,0% %	FIFO based	on unalle	ocated fish	-	
Zoom factor		1		,		_	
	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5	Alt. 6	
name	CPK trad	CPK bi					
enabled	on	on	off •	off 🔻	off	off	V
view chart export values save current values restore latest saved values restore default values							
feed stage 1							
fish weight							
starting weight	0,07	′5 kg					
final weight	0	,2 kg					
site	Mγre	Mγre	-	-		-	▼

Charts

- 1. Environmental fingerprint
- 2. Eco-efficiency plot
- 3. Costs
- 4. Energy use
- 5. Resource consumption
- 6. Global warming potential
 - ✓ Carbon footprint
- 7. Photochemical ozone creation potential

- 8. Acidification potential
- 9. Water emissions
- 10. Solid wastes
- 11. Land use
- 12. Risk potential
- 13. Toxicity potential
- 14. Fish in-fish out
 - ✓ No significance for LCA

1. Environmental fingerprint

- Environmental impact expressed by scores in relation to:
 - ✓ Energy consumption
 - √ Emissions
 - Air and water and solid waste
 - √ Toxicity potential
 - R-phrases of substances, LCA
 - Nature of special risks attributed to dangerous substances and preparations
 - ✓ Risks potential
 - Occupational accidents
 - √ Resources
 - Raw material consumption
 - Based on life span calculations of more than 200 natural resources
 - Available resources and rate of consumption are used to weight the amounts used
 - ✓ Land use

2. Determination of the Overall Environmental Impact- Weighting by subjective and objective factor

Calculation Factor = Geometric mean of Relevance Factor and Societal Factor

20%	Energy consumption	Air	Global Warming	
20%	Raw material consumption (incl. fish)	emissions 50%	Potential (incl. N ₂ O from agriculture rape seed)	50%
10%	Area use			
20%	Emissions	Water emissions	Ozone destruction	20%
20%	Toxicity potential (incl. dioxin in fish oil)	35%	Photochemical ozone creation potential	20%
10%	Risk potential	Waste 15%	Acidification potential	10%

2. Eco-Efficiency plot

- Impact of ecology and cost

- Eco-efficiency of a product relatively to other products
 - ✓ Environ. impact
 - ✓ Costs
- Strategic tool
 - ✓ To detect and exploit potential ecological and economic improvements
- Compare differences in sustainability

4. Energy use

6. Global Warming Potential (GWP)

- Expressed as CO₂-Equivalents

14. Fish in-fish out ratio

- No significance for LCA

Conclusions

- Methodology in place to develop more sustainable fish feeds
- ➤ Use of by-products (e.g. trimmings and silage for fishmeal and fish oil production) reduces the environmental effect of fish feed production
 - ✓ More sustainable