### Status Norway - with focus on R&D

Randi Nygaard Grøntvedt Researcher National Veterinary Institute





### Global supply of Atlantic salmon (tons)

|          |           | 2007      | 2008      | 2009E |           |       |
|----------|-----------|-----------|-----------|-------|-----------|-------|
| Atlantic |           |           |           |       |           |       |
| Salmon   | Norway    | 750 000   | 755 000   | 1 %   | 845 600   | 12 %  |
|          | Chile     | 351 000   | 398 000   | 13 %  | 159 200   | -60 % |
|          | Scotland  | 135 000   | 137 000   | 1 %   | 143 850   | 5 %   |
|          | Ireland   | 12 800    | 12 000    | -6 %  | 12 000    | 0 %   |
|          | The Faros | 20 100    | 35 000    | 74 %  | 49 000    | 40 %  |
|          | Iceland   | 1 742     | 1 000     | -43 % | 1 000     | 0 %   |
|          | Canada    | 110 669   | 119 000   | 8 %   | 130 900   | 10 %  |
|          | USA       | 10 000    | 10 000    | 0 %   | 10 000    | 0 %   |
|          | Australia | 24 000    | 26 000    | 8 %   | 27 300    | 5 %   |
|          | SUM       | 1 415 311 | 1 493 000 | 5 %   | 1 378 850 | -8 %  |



### Chemotherapeutants available in Norway

- For use in topical treatments:
  - Pyrethroids
    - deltametrin (Alphamax®)
    - cypermetrin (Betamax)
  - Organophosphorus compound
    - Azamethiphos (Salmonsan)
  - Hydrogen peroxide
- For use as oral treatments:
  - Avermectin (Slice)
  - Chitin inhibitors (Diflubenzuron, Teflubenzuron)



#### Norge



■ Bevegelige Lus ■ Voksne Hunnlus

#### Forklaring

Her kan du se utviklingen av lusebestanden de siste tre årene.

Velg landsdel i menyen til venstre.

- 2007
- 2008
- 2009



# Varieties of tools for louse control - a need for more knowledge

- Preventive measures
  - Ring-fence areas
    - Synchronised production cycle of 1-year class of fish
    - Fallowing
  - Vaccines
  - Breeding
  - Health feed
  - Other measurements
- 2. Biological control
  - use of cleaner fish, wrasse
  - Future coming biological control measurements?
- 3. Monitoring and surveillance
  - Counting, sensitivity testing, population development
- 4. Use of chemotherapeutants
- 5. Surveillance of wild salmonids



### An example on ring-fence areas in use





# Suggested ring-fenced areas in another part of the country





### Ongoing R&D projects related to structural measurements

- PrevenT (Salmon Louse Prevention and treatment)
  - Establishment of a salmon lice population dynamics model for use in:
    - web accessible dynamic maps in real-time as well as in forecasts.
    - Identification of areas, or farm sites, with elevated likelihood of resistant lice indicated by low treatment effects
    - Simulation of effects of control measures implemented in coastal areas, such as fallowing or synchronized treatments or vaccines
    - Testing predictions on the dispersion of salmon lice
    - Identify areas of poor understanding of salmon lice population processes and the needs of data gathering.
- Collaboration between National Veterinary Institute, Institute of Marine Research, Norwegian Institute of Nature Research and Norwegian computer center
- international cooperation





#### **Vaccines**



#### PrevenT, vaccine part

- 1. Tissue specific transcription in adult *L. salmonis* measured by microarray (UoB/IMR/NVI)
- 2. Signal mediation in the digestive canal (IMR)
- 3. Molecular characterisation of blood-digestion (UoB)
- 4. Identification of immune-inhibiting molecules, (NVI)
- 5. Clinical test of vaccine candidates (IMR/UoB/NVI)
- Focus on developing molecular and biological tools to identify and evaluate vaccine targets
- Adult female main research focus
  - knowledge of digestion processes and the link to reproduction



### Large scale RNAi-based screening to identify vaccine candidates

|   | Activity                                                         | Time        |
|---|------------------------------------------------------------------|-------------|
| 1 | Test >500 candidates with RNAi (~3%)                             | 3 years     |
| 2 | Evaluation of effects/localisation inn the lice/antigenisity etc | Continues   |
| 3 | Vaccine antigen candidates                                       | Continues   |
| 4 | 30 – 50 test vaccines                                            | 3-5 years   |
| 5 | 1-5 good vaccine candidates                                      | Ca. 3 years |



### Breeding (Nofima Marin)

- Towards selection for increased resistance to the salmon louse in Atlantic salmon (FHF: 2007-2012)
  - genetic variation in resistance against *L. salmonis*
  - genetic correlation between resistance to the salmon lice and other economic important production traits
  - search for biomarkers and develop predictors of increased resistance to sea lice that can be used for selection
  - investigate if the counting of the number of lice per fish can be automated using digital image analysis
    - for use on anaesthetized fish in the field



# Other biological control measurements to come? Looking for the sea lice secrets!

- PrevenT, vaccine part
  - Identify intestinal "achilles heels" targetable by other strategies than vaccines?
- RNAi technologi
  - Inhibit vital protein production in the sea louse, reduction in off spring?
- Sequencing and interpretation of the sea louse genome
  - Marine Harvest, IMR, FHF and UoB
- Interaction between fish and salmon louse: a transcriptomic study (FHF 2010)
  - To use multiple gene expression profiling for identification of genes that determine infectivity of salmon louse and resistance to the parasite in salmon



# Other development projects in the "preventive" category:

- Filtering systems in well boats and at slaughter facilities
- Mechanical removal of sea lice?
- Underwater feeding system?
- Closed farming systems?
- Other ideas?
  - LET US KNOW!

Effects? Feasibility? Needs for further development?



### Biological control by use of wrasse





### Wrasse, an effective weapon

**Data from Marine Harvest** 





### Ongoing R&D project related to wrasse

- Norwegian Research Council (RCN) project
  - Farming, with focus on nutrition and on-groing
  - Practical use of farmed wrasse
  - Collaboration between Marine Harvest, Villa Organic, IMR, NIFES and Nofima Marin
- Industry development
  - several commercial production sites
- Establishment of a knowledge platform
- Feeding systems and technologies for industrial production of wrasse (SINTEF)
- Biofilm and biofouling control how to make the wrasse work better in cages (SINTEF)



# Surveillance and resistance, ongoing R&D projects

- Topilouse (RCN-project 2010-2012)
  - Evaluation of effect after treatment:
    - From abundance to prevalence. An easier and more statistical secure method to evaluate treatment efficiency?
  - NVI, University of Strathclyde, Glasgow; University of Prince Edward Island, Canada

#### PrevenT:

- Mechanisms of drug resistance development
  - Development of simple single-dose bioassays for field use
  - Development of in vitro methods for detection of emerging resistance situations
  - Estimation of parameters for selection pressure after different treatments
- Norwegian School of Veterinary Science, UoB, VESO and Atlantic Veterinary college, Canada.
- Surveillance program on resistance







#### SINTEF - R &D contributions



Technological development of solutions for chemical treatment in cages







Operation of technical solutions for chemical treatment in cages

## Use of medications and optimalization of bath treatment methods

- Topilouse
  - Simulations of bath treatment methods in sea cages
    - Studies on: dispersion, technology, behaviour and oxygen uptake
  - Dispersion and fish behaviour studies in well boats
  - Security
  - Evaluation of effects
- Collaboration between NVI, SINTEF and IMR and many industrial partners
- Other industry development projects:
  - Optimalization of methodology for hydrogen peroxide use in well boats and sea cages
  - Simulation studies in well boat
    - Salmar, SINTEF, Nor consult
- Testing of new chemicals by using metabolomics (SINTEF)





Resultater fra DNA tracer metodikk



Dybde: 1,6 and 12 m

Tidspunkt: 5, 25, 50 and 90min



Resultater fra direkte metode



### Fiske adferd under avlusning, ekko-lodd observasjoner







## Well boats, hydrogen peroxide as a model system

Picture showing distribution through one channel:





### Distribution pattern after modification

Dosage from top through multi-channels





#### Sea lice surveillance in Norway, wild salmonids



Methods:

- Gillnetting (G)
- Electrofishing
- Sentinel cages (S)
- Trawling (T)

I this project we have a national monitoring of sea lice levels on wild salmonids along the Norwegian coast (April-September)

The monitoring programme is a collaboration between NINA, IMR, Nofima marin og Rådgivende biologer. Coordinated and led by NINA





