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Faustmann in the Sea:
Optimal Rotation in Aquaculture
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Abstract   In this article an extended version of the well-known Faustmann
model is developed for solving the rotation problem in fish farming. Two par-
ticularly important aspects of the problem are emphasized: First,  the
possibilities for cycles in relative price relationships and second, restrictions in
release time for certain species. An illustration of the model based on assump-
tions from salmon farming shows that the inclusion of these two features has
major influences on rotation time, and hence harvest weight.
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Introduction

As fish farms become larger and the industry becomes more competitive, optimal
production planning and efficient management practices become key factors for
profitability. Among the most important managerial activities in production planning
is that of determining the optimal rotation; i.e., finding the best sequence of release
and harvesting. This plan impacts the farm’s cash flow as well as the allocation of
limited production resources, such as feed, fish, space, and environmental resources
(Cacho 1997).

The rotation problem in fish farming has, together with other fish farming man-
agement problems, a lot in common with problems already solved in forestry and
animal husbandry.1 Bjørndal (1990, p. 139) states: “Conceptually, aquaculture is
more similar to forestry and animal husbandry than to traditional ocean fisheries,”
whereas Karp, Sadeh, and Griffin (1986) established the link between the rotation
problem in fish farming and that of forestry. During the last decade several models
for the optimal harvesting of farmed fish have been developed.2 However, most of
these studies consider only a one-shot decision, instead of treating the problem in a
dynamic context focusing on decisions for optimal rotation. With space (volume) as
a constraint, this is potentially a serious shortcoming of the traditional models. As
the marginal biomass value decreases over time, harvesting makes room for new re-

Atle G. Guttormsen is a professor in the Department of Economics and Resource Management at the Norwe-
gian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway, email: atle.guttormsen@umb.no

The author thanks Frank Asche, Olvar Bergland, and two anonymous referees for helpful comments
and the Norwegian Research Council for financial support. Any errors are the responsibility of the au-
thor.
1 Asche (2008) describes how the development of modern aquaculture shares many features of modern
agriculture.
2 Some articles related to the problem of optimal harvesting include: Leung (1986), Leung and Shang
(1989), Hean (1994), Rizzo and Spagnolo (1996), and Forsberg (1999).



Guttormsen402

leases of younger and faster growing fish. I will argue that considering a one-time
investment gives only a rough estimate, at best, of the optimal harvest time.

This article presents a dynamic programming model that solves the rotation
problem in aquaculture. Two particularly important aspects of the optimal rotation
problem will be emphasized. First, the possibility of releasing juvenile fish at any
time of the year is limited for many species and can be an important constraint. Sec-
ond, due to seasonalities in supply and demand, relative price relationships between
different sizes of fish vary throughout the year. Hence, large fish would reach rela-
tively higher prices than small fish at some times of the year, while the opposite
might be the case at other times of the year (Asche and Guttormsen 2001). When
solving for optimal harvesting time, the model should be able to include all appro-
priate relative price relationships.

The model can be used for different species of fish and different farming tech-
nologies. However, the phrasing and illustration of the model will be in terms of
salmon farming. There are two major reasons for this. Salmon is one of the most
successfully farmed fish, and salmon farming is a complex production process with
features that illustrate important aspects of the models.

In what follows, the rotation problem in fish farming is outlined, the main char-
acteristics of fish farming are stressed, and links to similar problems in other
industries are described. Then, previous models from the literature are briefly re-
viewed before the new model is presented. Finally, the usefulness of the model is
illustrated before the findings are summarized.

Optimal Rotation in Aquaculture

Farming techniques and practices vary between species as well as between firms
farming the same species. Different technologies include ponds, raceways, pens,
tanks, and cages. However, the basic principles are the same. Very simplified, the
process of fish farming can be described as follows: the farmer releases certain
amounts of recruits (juvenile fish) into pens or ponds, feeds them for some time, and
harvests them when they have reached an appropriate market weight. When the fish
are harvested, space becomes available for new juvenile fish. The farmer can then
decide if he or she wants to market small fish by short rotations or larger fish with
longer rotations. For some species it is possible to start a new generation at any time
of the year, while starting new rotations are limited to certain times of the year for
other species. The farmer’s two most important decisions in the production process
are then: (i) when to transfer the juvenile fish to the pen, and (ii) when to harvest the
fish; i.e., when to start and when to end a rotation.

The Faustmann solution has long been established as the correct approach to
solving rotation problems.3,4 The solution can be explained as follows. The tree
should be cut at age T when the marginal increment to the value of the trees equals
the sum of the opportunity cost of investment tied up in the standing trees and in the
site (independent of whether this site should continue as forest or be converted, for
example, into parking lots). The Faustmann model in it simplest form requires that a
new rotation is started at the same time as the previous one ends. This is not realistic
for several farmed species. Salmon smolts, for instance, can only be released during

3 The Faustmann article originally appeared in German, but was later translated to English (Faustmann
1849).
4 In addition to the similarities between fish farming and forestry, rotation problems in aquaculture also
share similarities with replacement problems in traditional livestock production. See Kennedy (1986).
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certain periods of the year.5 Other species are dependent on wild fingerlings or lar-
vae; such is the case in most of the shrimp farming industry and other capture-based
aquaculture. An optimal harvesting model for aquaculture should be able to take this
constraint into account. Note that including restrictions on starting time means that
there will be no universal optimal harvest weight. Instead, the optimal rotation will
be different for different groups of fish based on when the rotation starts.

A problem related to prices that is apparent in fish farming, but not so relevant
for forestry, is relative price relationships among sizes of fish.6 While a tree in the
forest will be of only a marginally larger size as time goes by, a growing salmon will
“jump” from one quality class to another with certain distinct characteristics every
time it develops into a new weight-class. Several studies indicate that the farmer re-
ceives different prices for different sizes. If the relationships between prices for
different weight classes are constant, they can easily be incorporated into the
Faustmann model. However Asche and Guttormsen (2001) examine relative prices
(i.e., relationships between prices for different weight classes) for salmon and find
that relative prices vary throughout the year; i.e., there exists patterns in the relative
price relationships. For some part of the year large fish receive a higher price per
kilo than small fish, and at other times of the year the situation is reversed. A har-
vesting model should be able to take these different deterministic price relationships
into account. This aspect is also of especial interest for new farmed species that
compete in the same markets as their wild cousins. Kristofersson and Rickertsen
(2004) find that prices for different sizes of cod vary during the season. Such cycles
might create opportunities for aquaculture, as fish farmers can take advantage of the
seasonalities in the wild fisheries and market their fish out of phase with the wild
products.

Previous Research on Optimal Harvesting in Aquaculture

While several studies exist on optimal harvesting problems for farmed aquatic spe-
cies, I will argue that most of these studies do not address all the important aspects
of the problem. In a chronological review of the period 1974 to 1996, Cacho (1997)
finds that the most popular species for modeling are shrimp, prawn, and salmon.
While some of the articles focus on specific species and technologies, others claim
to be more general and applicable for different technologies and species. In the fol-
lowing, a selection of important studies will be briefly reviewed.

Karp, Sadeh, and Griffin (1986) consider the problem of determining optimal
harvest as well as restocking time and level for farmed shrimp. They first consider
the case where production occurs continuously, modeled as a deterministic, continu-
ous-time autonomous control problem. Harvest and subsequent restocking are
modeled as “jumps” in the biomass. Their contribution to the traditional Faustmann
solution is that the optimality conditions determine the restocking level as well as
the harvest level. Second, they consider the situation where the environment is un-
controlled, modeled as a stochastic control problem. They then proceed to solve it
with dynamic programming. However, their model is not flexible enough to include

5 Due to biological and economic reasons, smolts can only be transferred to sea during a certain period
of the year (March-October). In nature, salmon spawn during late spring and hatch normally in January.
Therefore, most salmon produced “are born” in January. The supply of smolts is consequently limited in
other periods. Smolts do not tolerate cold weather well, so release during the winter months is connected
with great risk of loss.
6 For most species, the price per kg will increase with the size of the fish (Asche, Guttormsen, and
Tveterås (2001).
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different relative price relationships, and they assume that a new rotation can start at
any time of the year.

Bjørndal’s (1988, 1990) main point is that fish in a pen are nothing else than a
particular form of growing capital. Hence the objective of finding the optimal har-
vesting times is similar to maximizing the present value of an investment. Bjørndal
presents a model in which he illustrates the changes in biomass value over time as a
function of growth, natural mortality, and fish prices. He then adds costs to the
model and presents a comparative statics analysis of the effects of changes in the pa-
rameters on optimal harvest date. However, the model is in terms of a one-time
investment and what happens after the harvest is not considered. Bjørndal (1988, p.
153) admits that: “It is not sufficient to merely consider a single harvesting time.
The problem in question represents an infinite series of investments rather than a
one time investment.” While he briefly presents a Faustmann-like solution to the
problem, the model can neither treat the problem containing restrictions on release
time nor treat dynamics in relative price relationships.

Several authors have extended Bjørndal’s model to emphasize specific aspects
of the problem. Arnason (1992) introduces dynamic behavior and presents a general
comparative dynamic analysis. He also introduces feeding as a decision variable.
Heaps (1993) deals with density-independent growth, whereas Heaps (1995) allows
for density-dependent growth and also looks at the culling of farmed fish. Mistiaen
and Strand (1998) demonstrate general solutions for optimal feeding schedules and
harvesting time under conditions of piecewise-continuous, weight-dependent prices.
None of these studies consider the rotation problem.

As this brief review illustrates, only Karp, Sadeh, and Griffin (1986) and
Bjørndal (1988, 1990) discuss the rotation problem. However both assume that
when one year-class is harvested, the next one is released immediately. This again
implies that recruits are available throughout the year, which is not the case for a
number of important species (salmon, among others). None of the articles discuss
the problems of dynamics in relative price relationships. This is a serious weakness
of the model because changes in relative prices are significant for some aquaculture
species (Asche and Guttormsen 2001).

An Extended Faustmann Model

The Faustmann model, developed in 1849, has been established as a benchmark
model for determining optimal timber rotation age. Faustmann showed that the
value of a forest can be expressed as a sum of net cash flow over an infinite time
period and that a forest owner’s goal is to choose rotation so that the value of a for-
est is maximized. Translated to aquaculture, Faustmann’s rule says that it is optimal
to harvest a cohort at time T*, when the marginal increment to the value of the co-
hort equals the sum of the opportunity cost of investment tied up in the cohort and in
the empty pen; i.e., when marginal benefits from delaying harvest are equal to marginal
cost of delaying harvest. Marginal costs of delaying harvests include not only foregone
interest payments, but also the value lost from delaying the next rotations.

To take into account the problematic assumptions about the possibilities of con-
tinuous release of juvenile fish and constant relative prices, I will now extend the
Faustmann model. For pedagogical reasons I have divided the model into two parts,
one part for the harvesting problem and one for the release problem; i.e., when there
are fish in the pen and when the pen is empty. With fish in the pen the farmer can, at
every decision stage, either harvest the fish or wait. If he harvests he will have an
empty pen in which he can either start a new rotation or not. Even though the model
is phrased in two parts, it is solved as one optimization problem.
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I will present the model as a discrete dynamic programming model, were the ob-
jective is to maximize the value of the pen over an infinite time horizon. I start by
defining the biological part of the model, and then add prices and cost to construct
the full bioeconomic model.

Biomass is dependent upon the number of fish and the weight of each fish. I as-
sume homogeneity among the fish (i.e., all fish grow at the same speed, so that I can
speak of a representative fish). The biomass of a year class at time t, bt, is then cal-
culated as:

b n wt t t= ,

where nt is the number of fish and wt is the weight of the representative fish. As time
increases, two processes will influence the growth of biomass; some fish will die,
and the others will gain weight. The number of fish at every stage is consequently a
function of number of fish released, n0, and mortality, m. Number of fish at time t + 1,
nt+1, will consequently be: nt+1 = (1 – m)nt. Mortality, m, can be treated as constant or
varying throughout the year as a function of the size of the fish and the time of year.
Those fish that do not die will grow and gain weight. I assume that the fish grow
according to some well-defined growth function, g(wt, temp), which is a function of
initial weight, wt, and water temperature.7 For simplicity, I assume that water tem-
perature follows some site-specific temperature table such that temp can be
substituted with month number, k. Weight of each individual fish at time t + 1 will
then be: wt+1 = g(wt, k)wt. Hence biomass will be bt = wtnt  and bt+1 = wt+1nt+1 in peri-
ods t and t + 1, respectively, where wt+1 = g(wt, k)wt and nt+1 = (1 – m)nt.

I have then established the biological relationships and can add input and output
prices. The value of the standing biomass at time t, Vt, is found by multiplying price
times biomass.  Defining price per kilo as a function of weight, w, and season, pre-
sented by month number, k, I will have a price function pt(wt,kt). This function
provides flexibility to the model, and I can model all sorts of relative price relation-
ships. I will exemplify this price function in our example. This function is the same
that is used in Forsberg and Guttormsen (2006). The value of the biomass at all t is
hence Vt = pt(wt, kt)wtnt. Given that the farmer decides to harvest the cohort, the
value of the pen will be this value, plus the discounted value of future profit.

The objective of decision making for the fish farmer is to maximize the present
value of net income streams to infinity. I assume first that the only decision variable
is whether to harvest or to wait. If the farmer decides to wait, the fish will grow, and
there will be some cost associated with the decision. However, to simplify I only in-
clude feeding cost and neglect harvest cost.

If the farmer chooses to delay harvest, the value of the pen will be the dis-
counted value for the next period minus the incurred feeding cost; i.e. – cf + αVt+1,
where cf are the feeding costs and α is the discount factor. I assume a constant feed
conversion rate, which means feeding cost is a function of weight gain, and feed-
price, fp; i.e., the cost of feeding a cohort from t to t + 1,cf

t→t+1 = FCR(nt+1wt+1 –
ntwt)fp. By adding it all together, I can now write the farmers maximization problem
as follows:

V w n k p w k w n d c V w n kt t t t
d

t t t t t t
f

t t t t
t

( , , ) max ( , ) ( , , ) ,= − +{ }→ + + + + +1 1 1 1 1α (1)

7 Growth functions in practical fish farming are usually tabulated; i.e., the table indicates how much a
fish of size w will grow in one day with different water temperatures.
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where dt is the decision variable, taking 0 for wait and 1 for harvest, and all other
variables are as presented above.

Immediately after harvest the pen is empty and the farmer can decide whether to
release new fish or wait. Hence, he must decide at every stage whether releasing ju-
venile fish immediately, or waiting, maximizes the net present value of the pen. The
value when releasing fish will be the discounted future value of the pen minus the
cost of releasing, –cr. With a decision to release, the weight of the representative fish
the next period will be (1 – δk)wt, where δk is then a first day death rate. This param-
eter is the key for handling the problems of restrictions in release time. In periods
where it is impossible to release juvenile fish, I set δk equal to one. In periods where
it is possible to release but with high death rate, I can set δk equal to 0.5 etc.8 The
release decision is defined by the following:

V k c s V w n kt t
s

r t t t t t
t

( , ) max ( , , )0 1 1 1 1= − +{ }+ + + +α (2)

where:
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w s w
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11

 not release

 release      

( ) .δ

By adding equations (1) and (2), I have a model that can solve the harvesting prob-
lem independent of restrictions in release time and with many relative price
relationships. It is also relatively easy to add different costs; i.e., release cost, har-
vest cost, insurance cost, etc., and then examine what happens with rotation time
when changes occur in one or several of the parameters.

The model will then end up as a generalized version of the Faustmann problem.
With growth independent of release time; i.e., δk equals to zero (which means that it
is possible to release fish during the whole year) and no seasonalities or fluctuations
in prices or costs, the model will collapse down to the traditional Faustmann solu-
tion.

8 For simplicity, I have assumed weight gain to be zero in the first period. This assumption is reasonable
because the fish need some time in the pen to adapt to the new environment.
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An Empirical Illustration

The model is relatively easy and flexible to use, and I will only illustrate the impor-
tance of extending the standard Faustmann model with some fairly simple numerical
illustrations. The model is programmed in MATLAB from MathWorks Inc. and
solved with a toolbox developed by Miranda and Fackler (2001). To emphasize the
importance of extending the model, unnecessary details are ignored. The model is
applied to salmon farming. This is based on the fact that salmon is one of the most
successfully farmed species, and that salmon farming exhibits features that illustrate
important aspects of the model.

Biomass is defined as the number of fish times fish weight, and for weight
gains, a slightly updated version of the growth function provided in Bjørndal (1990)
is used.9 The growth function is defined as follows:

w y y y( ) . . ,= −2 8 0 72 3 (3)

where y is number of years from release. The function is tabulated for months. I
have further set the monthly mortality rate to 0.8% and the interest rate to 7%. There
is no need to define a specific n0, since it is the relative change that is important. To
simplify, release and harvest cost is set to zero, and feed cost is assumed to be pro-
portional to growth. That means that the fish need the same amount of feed to grow
regardless of whether they grow from one to two kilos or from four to five kilos.
The models are then programmed and solved with different assumptions about re-
lease time and relative price relationship.

First, I solved the model with the standard Faustmann assumptions; i.e., I as-
sumed constant relative prices and the possibility to release smolts to sea through
the whole year. This means that δk is equal to zero in all months. With a price per
kilogram of all sized salmon of NOK 26, I find that optimal harvest time is after 21
months in sea when the fish have reached 4.8 kilos market weight. This is the
Faustmann rotation length, indicating that at this time, the potential interest gained
on the harvested value plus the growth in value for the new release is larger than the
growth in value for the swimming biomass. This is shown in the second column in
Table 1 under the heading ‘Faustmann.’ Given these assumptions, the harvest weight
is also independent of which period the fish is released.

Next, I loosen the assumption about continuous release possibilities and restrict
release time to seasons in the year were it is possible to start a salmon rotation. I
then set δk to zero in March, April, May, August, September, and October and let δk

equals one for the other months. All other assumptions are the same as in the first
example. The optimal harvest weight is given in the third column in table 1 under
the heading ‘Constant Price.’ As one can see, these restrictions give different harvest
times depending upon starting time. For some starting times, harvest is postponed,
while for other starting times, harvest is pushed forward. This, of course, makes
sense. Following the Faustmann solution, fish released in March should be har-
vested in December. As such, the farmer would have an empty pen until March, and
consequently three months without any production. It can be seen that only the fish
released in August will be harvested at 4.8 kilos, and fish released at other times of
the year will be harvested between months 19 and 23 (4.2–5.3 kilos).

To illustrate another of the advantages of the extended model, I also include a

9 Bjørndal’s (1990) growth functions are based on data from salmon farmed in 1988. Since then selec-
tive breeding, feed, and feeding technology have improved the farming such that the fish grow much
faster.
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non-constant relative price relationship. This relative price relationship is based on
the results in Asche and Guttormsen (2001) as follows. Based on price observations
for salmon of different sizes from 1993 to 2002, a monthly relative price index is
constructed for each weight class. Three to five kilos is used as a base weight; i.e.,
the price equals one. The price index for the other weight classes, 5–6 kilos for in-
stance in January, is then calculated as:

( ).p p
i

n

i, january
kilos

i, january
kilos5 6 3 5

1993

2002

− −

=

=

∑ (4)

A graph of the price indexes is provided in figure 1. As can be seen, larger fish will
usually be more valuable than smaller fish. However, this changes during the year.
Looking at the optimal harvest results in the final column of table 1, one can see that
the numbers change significantly. Fish released in April should now be harvested at
3.32 kilos after 16 months in the sea instead of at 5.36 kilos after 23 months in the
sea. Also, for all other release times, the inclusion of the relative price relationship
substantially changes the harvest time.

Concluding Remarks

The rotation problem in fish farming shares many features with rotation problems in
forestry and traditional terrestrial livestock production. However, fish farming also
exhibits specific features that demand a more flexible model than those constructed
for other industries. In this article, such a model is presented. This model is general
and flexible enough to treat different species and technologies. Two specific features
for aquaculture are stressed: restrictions on release times and dynamic relative price
relationships. To illustrate the strength of the model and the importance of extending tra-
ditional models, a simple example of the use of the model is presented. The empirical
illustration shows the importance of a model that can treat different relative price re-
lationships as well as restrictions on when it is possible to start a new rotation.

Asche and Guttormsen (2001) claim that: “we in general cannot say anything
about the direction of the changes in the harvest time due to the cycles in relative
prices.” This claim is confirmed with the extended model since fish released at dis-

Table 1
Optimal Harvest Weight and Time with and without Relative Price Relationship

Harvest Weight in Kilos/Age (months)

Relative Price
Release Time Faustmann Constant Price Relationship

March 4.82 (21) 4.24 (19) 3.63 (17)
April 4.82 (21) 5.36 (23) 3.32 (16)
May 4.82 (21) 5.10 (22) 6.47 (29)
August 4.82 (21) 4.82 (21) 6.03 (26)
September 4.82 (21) 4.54 (20) 5.60 (24)
October 4.82 (21) 5.10 (22) 5.36 (23)
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tinct times of the year will have higher harvest weights when relative price relation-
ships are included, while fish released at other times of the year will have lower
harvest weigh ts.

As fish farm enterprises become larger and the industry becomes more competi-
tive, the timing of harvesting and marketing become key factors for success. The
production plan has an impact on the cash flow from the farm as well as on the allo-
cation of limited resources in production, such as feed, fish, space, and
environmental resources. Consequently, a well-developed production plan can mean
the difference between loss and profit for a fish farm.
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