Exercise training to improve performance and robustness of Atlantic salmon

Funded by FHF and RCN

Background

- Improving robustness of the fish is a key issue in aquaculture
- A fish in good condition perform better:
 - Faster growth with better feed utilization
 - More disease resistant
 - Better welfare
- However! The industry is balancing on the edge of having a sustainable production
 - ISA
 - PD
 - CMS
 - Lice
 - Epicarditis etc
 - Deformities

Aim for the project

- Optimize the beneficial effect of aerobic endurance training to improve growth, cardiac performance and health in A. salmon.
- Test different endurance training programmes of variable intensities and duration during the freshwater stage and evaluate the training effects on:
 - cardiac performance and ability to face environmental constraints
 - disease resistance by conducting challenge tests and examine gene responses.
 - appetite, growth responses and nutrient utilization by standard nutritional measurements

Outline first trial

Growth

Thermal Growth Coefficient

- Growth rate improved by 20-22% in exercised fish
- FCR not affected

IPN challenge test

- Could the improved survival of trained fish be explained by a modulation of the immune system?
- Could the difference in survival between M and M+ fish be explained by gene activity?

Exercise and the immune system

The burden of low level chronic inflammation

- Inactivity
- Morbidity
- Obesity
- Infections
- High fat intake
- Injury

Exercise

- Humans:
 - During exercise: TNFα, IL-1β and IL-6
 - Recovery: TNFα, IL-1β and IL-6

How is the situation in salmon?

Exercise and the immune system

- High levels of inflammatory cytokines may reflect cellular stress/damage
- Higher basal inflammatory levels
- No adaptation to exercise yet?

Exercise and the immune system

- Decreased level of inflammatory status
- Improved disease resistance at challenge

SFA 2 Microarray (1.8 K; cDNA)

HEART	Medium	Medium+	
Inflammation:			Eicosanoid pathway and NF-kB pathway
Complement:		1	First line of host defence: i) amplifying the immune response ii) labeling for destruction iii) killing pathogens
Antigen proces. & pres:		1	Ubiquitin-Proteasome System and MHC-I →Lowered resting level of antiviral response machinery
Adhesion:	_	1	Possibly more immune cells in the heart of M+ fish
Antioxidants:	_	1	Better protection against oxidative stress
Tissue remodeling:	_	1	Improved cardiac capacity?

FitnessFish exercise training lab

First trial:

Velocity regulated by the inlet water pressure and by the size of the die gap on the inlet pipes

- Little flexibility for interval training
 - Manual adjustments necessary to conduct interval training
- Limited maximum water velocity (17 cm/s)

FitnessFish:

Velocity regulated by individual pumps for each tank

- Great flexibility for interval training
 - Automatic control of the interval programming
 - Fast change of water velocity
- Increased maximum water velocity (27 cm/s)

Growth response

TGC

Condition factor

Growth response

Feed efficiency

TGC

Exercise intensity and immune function

Risk of disease

- Exercise above a certain duration and intensity induce a temporary immunosuppression
- Severe immunosuppression may occur if the immune system are not allowed to recover before a new bout of exercise
- To hard training can result in chronic inflammatory responses and lead to inflammation and disease

Amount and intensity of exercise

Critical to identify exercise protocols with optimal duration and intensity

Effect of exercise in survival in IPN challenge test

 Results will be followed up by mRNA and protein expression studies

Effect of swimming capacity at start of training on survival in IPN challenge test

- Swimming performance tested for all fish at start of trial
- Category 1 till 4 (poor good swimmers
- Great variation in performance

Quality parameters after 10 weeks of training

Conclusions

- Exercise training has a positive effect on:
 - Growth
 - Disease resistance, but duration and intensity seems to be essential
 - Immune system
- Great variance in inherited swimming capacity
- Swimming capacity of parr might correspond to disease resistance

Contributors

- Nofima Marin: Vicente Castro, Ståle Helland, Barb Grisdale-Helland, Aleksei Krasnov, Rita Storslett, Ane Marthe Sivertsen, Sven Martin Jørgensen, Turid Mørkøre, Harald Takle
- NIVA: Torstein Kristensen, Knut-Erik Tollefsen m.fl.
- NTNU medisin: Jan Helgerud
- NVH: Trygve Poppe
- University of Brest: Guy Claireaux
- University of British Columbia: Anthony Farrell
- Aakvik settefisk: Brit Tørud
- FHL: Kjell Maroni

